|
7 | 7 | from functools import partial |
8 | 8 |
|
9 | 9 | import torchmetrics |
10 | | - |
11 | | -from autoemulate.core.types import OutputLike, TensorLike, TorchMetricsLike |
| 10 | +from einops import rearrange |
| 11 | +from torchmetrics.regression.crps import ContinuousRankedProbabilityScore |
| 12 | + |
| 13 | +from autoemulate.core.types import ( |
| 14 | + DistributionLike, |
| 15 | + OutputLike, |
| 16 | + TensorLike, |
| 17 | + TorchMetricsLike, |
| 18 | +) |
12 | 19 |
|
13 | 20 |
|
14 | 21 | class Metric: |
@@ -71,6 +78,97 @@ def __call__(self, y_pred: OutputLike, y_true: TensorLike) -> TensorLike: |
71 | 78 | return metric.compute() |
72 | 79 |
|
73 | 80 |
|
| 81 | +class ProbabilisticMetric(Metric): |
| 82 | + """Base class for probabilistic metrics.""" |
| 83 | + |
| 84 | + @abstractmethod |
| 85 | + def __call__(self, y_pred: OutputLike, y_true: TensorLike) -> TensorLike: |
| 86 | + """Calculate metric.""" |
| 87 | + |
| 88 | + |
| 89 | +class CRPS(ProbabilisticMetric): |
| 90 | + """Continuous Ranked Probability Score (CRPS) metric. |
| 91 | +
|
| 92 | + Parameters |
| 93 | + ---------- |
| 94 | + name : str |
| 95 | + Display name for the metric. |
| 96 | + maximize : bool |
| 97 | + Whether higher values are better. Defaults to False. |
| 98 | + """ |
| 99 | + |
| 100 | + name: str = "crps" |
| 101 | + maximize: bool = False |
| 102 | + |
| 103 | + def __call__( |
| 104 | + self, y_pred: OutputLike, y_true: TensorLike, n_samples: int = 1000 |
| 105 | + ) -> TensorLike: |
| 106 | + """Calculate CRPS metric. |
| 107 | +
|
| 108 | + The metric can handle both deterministic predictions (tensors) and probabilistic |
| 109 | + predictions. |
| 110 | +
|
| 111 | + Aggregation across batch and target dimensions is performed by flattening such |
| 112 | + that the sum of scores is taken across all samples for each point. |
| 113 | +
|
| 114 | + Parameters |
| 115 | + ---------- |
| 116 | + y_pred: OutputLike |
| 117 | + Predicted outputs. Can be a tensor or a distribution. If `y_pred` is a |
| 118 | + tensor of shape (batch_size, *(target_shape)), it is treated as |
| 119 | + a deterministic prediction and reduces the metric calculation to mean |
| 120 | + absolute error. |
| 121 | + If `y_pred` is a tensor of shape |
| 122 | + `(batch_size, *(target_shape), n_samples)`, it is treated as a |
| 123 | + probabilistic prediction and the metric is computed across the samples. |
| 124 | + If `y_pred` is a distribution, then `n_samples` are drawn from the predicted |
| 125 | + distribution to estimate the CRPS. |
| 126 | + y_true: TensorLike |
| 127 | + True target values. |
| 128 | + n_samples: int |
| 129 | + Number of samples to draw from the predicted distribution if `y_pred` is a |
| 130 | + distribution. Defaults to 1000. |
| 131 | +
|
| 132 | + """ |
| 133 | + if not isinstance(y_true, TensorLike): |
| 134 | + raise ValueError(f"Metric not implemented for y_true ({type(y_true)})") |
| 135 | + |
| 136 | + crps_metric = ContinuousRankedProbabilityScore() |
| 137 | + crps_metric.to(y_true.device) |
| 138 | + |
| 139 | + # Deterministic predictions case |
| 140 | + if (isinstance(y_pred, TensorLike) and y_pred.dim() == y_true.dim()) or ( |
| 141 | + isinstance(y_pred, TensorLike) and y_pred.dim() == y_true.dim() + 1 |
| 142 | + ): |
| 143 | + samples = y_pred |
| 144 | + # Distribution case |
| 145 | + elif isinstance(y_pred, DistributionLike): |
| 146 | + # Move sample dim to end |
| 147 | + samples = rearrange(y_pred.sample((n_samples,)), "s b ... -> b ... s") |
| 148 | + print(samples.shape, y_true.shape) |
| 149 | + assert samples.shape[:-1] == y_true.shape, ( |
| 150 | + f"predictive distribution samples shape {samples.shape} does not match " |
| 151 | + f"y_true shape {y_true.shape} " |
| 152 | + ) |
| 153 | + # Otherwise, raise error |
| 154 | + else: |
| 155 | + if isinstance(y_pred, TensorLike) and isinstance(y_true, TensorLike): |
| 156 | + msg = ( |
| 157 | + f"Metric not implemented for y_pred shape ({y_pred.shape}) given " |
| 158 | + f"y_true shape ({y_true.shape})" |
| 159 | + ) |
| 160 | + raise ValueError(msg) |
| 161 | + msg = ( |
| 162 | + f"Metric not implemented for y_pred ({type(y_pred)}) and y_true " |
| 163 | + f"({type(y_true)})" |
| 164 | + ) |
| 165 | + raise ValueError(msg) |
| 166 | + |
| 167 | + # Reshape samples and y_true to (-1, n_samples) and (-1,) respectively, compute |
| 168 | + samples = samples.flatten(start_dim=0, end_dim=-2) |
| 169 | + return crps_metric(samples, y_true.flatten()) |
| 170 | + |
| 171 | + |
74 | 172 | R2 = TorchMetrics( |
75 | 173 | metric=torchmetrics.R2Score, |
76 | 174 | name="r2", |
|
0 commit comments