|
| 1 | +import gpytorch |
| 2 | +import numpy as np |
| 3 | +import torch |
| 4 | +from sklearn.base import BaseEstimator |
| 5 | +from sklearn.base import RegressorMixin |
| 6 | +from sklearn.preprocessing._data import _handle_zeros_in_scale |
| 7 | +from sklearn.utils import check_array |
| 8 | +from sklearn.utils import check_X_y |
| 9 | +from sklearn.utils.validation import check_is_fitted |
| 10 | +from skorch.callbacks import LRScheduler |
| 11 | +from skorch.probabilistic import ExactGPRegressor |
| 12 | + |
| 13 | +from autoemulate.emulators.gaussian_process_utils import EarlyStoppingCustom |
| 14 | +from autoemulate.emulators.gaussian_process_utils import PolyMean |
| 15 | +from autoemulate.emulators.neural_networks.gp_module import GPModule |
| 16 | +from autoemulate.utils import set_random_seed |
| 17 | + |
| 18 | + |
| 19 | +class GaussianProcess(RegressorMixin, BaseEstimator): |
| 20 | + """Exact Gaussian Process emulator build with GPyTorch. |
| 21 | +
|
| 22 | + Batched Multi-Output GP, treating outputs independently. |
| 23 | +
|
| 24 | + Parameters |
| 25 | + ---------- |
| 26 | + mean_module : GP mean, defaults to gpytorch.means.ConstantMean() when None |
| 27 | + covar_module : GP covariance, defaults to gpytorch.kernels.RBFKernel() when None |
| 28 | + lr : learning rate, default=1e-1 |
| 29 | + optimizer : optimizer, default=torch.optim.AdamW |
| 30 | + max_epochs : maximum number of epochs, default=30 |
| 31 | + normalize_y : whether to normalize the target values, default=True |
| 32 | + device : device to use, defaults to "cuda" if available, otherwise "cpu" |
| 33 | + random_state : random seed, default=None |
| 34 | + """ |
| 35 | + |
| 36 | + def __init__( |
| 37 | + self, |
| 38 | + # architecture |
| 39 | + mean_module=None, |
| 40 | + covar_module=None, |
| 41 | + # training |
| 42 | + lr=2e-1, |
| 43 | + optimizer=torch.optim.AdamW, |
| 44 | + max_epochs=50, |
| 45 | + normalize_y=True, |
| 46 | + # misc |
| 47 | + device="cpu", |
| 48 | + random_state=None, |
| 49 | + ): |
| 50 | + self.mean_module = mean_module |
| 51 | + self.covar_module = covar_module |
| 52 | + self.lr = lr |
| 53 | + self.optimizer = optimizer |
| 54 | + self.max_epochs = max_epochs |
| 55 | + self.normalize_y = normalize_y |
| 56 | + self.device = device |
| 57 | + self.random_state = random_state |
| 58 | + |
| 59 | + def _get_module(self, module, default_module, n_features, n_outputs): |
| 60 | + """ |
| 61 | + Get mean and kernel modules. |
| 62 | +
|
| 63 | + We can't default the modules in the constructor because 'fit' modifies them which |
| 64 | + fails scikit-learn estimator tests. Therefore, we deepcopy if module is given or return the default class |
| 65 | + if not. |
| 66 | + """ |
| 67 | + if module is None: |
| 68 | + return default_module |
| 69 | + if callable(module): |
| 70 | + # torch.Size is needed to specify the batch shape |
| 71 | + return module(n_features, torch.Size([n_outputs])) |
| 72 | + else: |
| 73 | + ValueError("module must be callable or None") |
| 74 | + |
| 75 | + def fit(self, X, y): |
| 76 | + """Fit the emulator to the data. |
| 77 | +
|
| 78 | + Parameters |
| 79 | + ---------- |
| 80 | + X : array-like of shape (n_samples, n_features) |
| 81 | + The input data. |
| 82 | + y : array-like of shape (n_samples, ) |
| 83 | + The output data. |
| 84 | + Returns |
| 85 | + ------- |
| 86 | + self : object |
| 87 | + Returns self. |
| 88 | + """ |
| 89 | + if self.random_state is not None: |
| 90 | + set_random_seed(self.random_state) |
| 91 | + |
| 92 | + X, y = check_X_y( |
| 93 | + X, |
| 94 | + y, |
| 95 | + y_numeric=True, |
| 96 | + multi_output=True, |
| 97 | + dtype=np.float32, |
| 98 | + copy=True, |
| 99 | + ensure_2d=True, |
| 100 | + ) |
| 101 | + self.y_dim_ = y.ndim |
| 102 | + self.n_features_in_ = X.shape[1] |
| 103 | + self.n_outputs_ = y.shape[1] if y.ndim > 1 else 1 |
| 104 | + y = y.astype(np.float32) |
| 105 | + |
| 106 | + # GP's work better when the target values are normalized |
| 107 | + if self.normalize_y: |
| 108 | + self._y_train_mean = np.mean(y, axis=0) |
| 109 | + self._y_train_std = _handle_zeros_in_scale(np.std(y, axis=0), copy=False) |
| 110 | + y = (y - self._y_train_mean) / self._y_train_std |
| 111 | + |
| 112 | + # default modules |
| 113 | + default_mean_module = gpytorch.means.ConstantMean( |
| 114 | + batch_shape=torch.Size([self.n_outputs_]) |
| 115 | + ) |
| 116 | + |
| 117 | + # combined RBF + constant kernel works well in a lot of cases |
| 118 | + rbf = gpytorch.kernels.RBFKernel( |
| 119 | + ard_num_dims=self.n_features_in_, # different lengthscale for each feature |
| 120 | + batch_shape=torch.Size([self.n_outputs_]), # batched multioutput |
| 121 | + # seems to work better when we initialize the lengthscale |
| 122 | + ).initialize(lengthscale=torch.ones(self.n_features_in_) * 1.5) |
| 123 | + constant = gpytorch.kernels.ConstantKernel() |
| 124 | + combined = rbf + constant |
| 125 | + |
| 126 | + default_covar_module = gpytorch.kernels.ScaleKernel( |
| 127 | + combined, batch_shape=torch.Size([self.n_outputs_]) |
| 128 | + ) |
| 129 | + |
| 130 | + mean_module = self._get_module( |
| 131 | + self.mean_module, default_mean_module, self.n_features_in_, self.n_outputs_ |
| 132 | + ) |
| 133 | + covar_module = self._get_module( |
| 134 | + self.covar_module, |
| 135 | + default_covar_module, |
| 136 | + self.n_features_in_, |
| 137 | + self.n_outputs_, |
| 138 | + ) |
| 139 | + |
| 140 | + # wrapping in ScaleKernel is generally good, as it adds an outputscale parameter |
| 141 | + if not isinstance(covar_module, gpytorch.kernels.ScaleKernel): |
| 142 | + covar_module = gpytorch.kernels.ScaleKernel( |
| 143 | + covar_module, batch_shape=torch.Size([self.n_outputs_]) |
| 144 | + ) |
| 145 | + |
| 146 | + # model |
| 147 | + self.model_ = ExactGPRegressor( |
| 148 | + GPModule, |
| 149 | + module__mean=mean_module, |
| 150 | + module__covar=covar_module, |
| 151 | + likelihood=gpytorch.likelihoods.MultitaskGaussianLikelihood( |
| 152 | + num_tasks=self.n_outputs_ |
| 153 | + ), |
| 154 | + max_epochs=self.max_epochs, |
| 155 | + lr=self.lr, |
| 156 | + optimizer=self.optimizer, |
| 157 | + callbacks=[ |
| 158 | + ( |
| 159 | + "lr_scheduler", |
| 160 | + LRScheduler(policy="ReduceLROnPlateau", patience=5, factor=0.5), |
| 161 | + ), |
| 162 | + ( |
| 163 | + "early_stopping", |
| 164 | + EarlyStoppingCustom( |
| 165 | + monitor="train_loss", |
| 166 | + patience=10, |
| 167 | + threshold=1e-3, |
| 168 | + load_best=True, |
| 169 | + ), |
| 170 | + ), |
| 171 | + ], |
| 172 | + verbose=0, |
| 173 | + device=self.device, |
| 174 | + ) |
| 175 | + self.model_.fit(X, y) |
| 176 | + self.is_fitted_ = True |
| 177 | + return self |
| 178 | + |
| 179 | + def predict(self, X, return_std=False): |
| 180 | + """Predict the output of the emulator. |
| 181 | +
|
| 182 | + Parameters |
| 183 | + ---------- |
| 184 | + X : array-like of shape (n_samples, n_features) |
| 185 | + The input data. |
| 186 | + return_std : bool, default=False |
| 187 | + Whether to return the standard deviation. |
| 188 | +
|
| 189 | + Returns |
| 190 | + ------- |
| 191 | + y : array-like of shape (n_samples, ) |
| 192 | + The predicted output. |
| 193 | + """ |
| 194 | + |
| 195 | + # checks |
| 196 | + check_is_fitted(self) |
| 197 | + X = check_array(X, dtype=np.float32) |
| 198 | + |
| 199 | + # predict |
| 200 | + mean, std = self.model_.predict(X, return_std=True) |
| 201 | + |
| 202 | + # sklearn: regression models should return float64 |
| 203 | + mean = mean.astype(np.float64) |
| 204 | + std = std.astype(np.float64) |
| 205 | + |
| 206 | + # output shape should be same as input shape |
| 207 | + # when input dim is 1D, make sure output is 1D |
| 208 | + if mean.ndim == 2 and self.y_dim_ == 1: |
| 209 | + mean = mean.squeeze() |
| 210 | + std = std.squeeze() |
| 211 | + |
| 212 | + # undo normalization |
| 213 | + if self.normalize_y: |
| 214 | + mean = mean * self._y_train_std + self._y_train_mean |
| 215 | + std = std * self._y_train_std |
| 216 | + |
| 217 | + if return_std: |
| 218 | + return mean, std |
| 219 | + return mean |
| 220 | + |
| 221 | + def get_grid_params(self, search_type="random"): |
| 222 | + """Returns the grid parameters for the emulator.""" |
| 223 | + |
| 224 | + def rbf(n_features, n_outputs): |
| 225 | + return gpytorch.kernels.RBFKernel( |
| 226 | + ard_num_dims=n_features, |
| 227 | + batch_shape=n_outputs, |
| 228 | + ).initialize(lengthscale=torch.ones(n_features) * 1.5) |
| 229 | + |
| 230 | + def matern_5_2_kernel(n_features, n_outputs): |
| 231 | + return gpytorch.kernels.MaternKernel( |
| 232 | + nu=2.5, |
| 233 | + ard_num_dims=n_features, |
| 234 | + batch_shape=n_outputs, |
| 235 | + ) |
| 236 | + |
| 237 | + def matern_3_2_kernel(n_features, n_outputs): |
| 238 | + return gpytorch.kernels.MaternKernel( |
| 239 | + nu=1.5, |
| 240 | + ard_num_dims=n_features, |
| 241 | + batch_shape=n_outputs, |
| 242 | + ) |
| 243 | + |
| 244 | + def rq_kernel(n_features, n_outputs): |
| 245 | + return gpytorch.kernels.RQKernel( |
| 246 | + ard_num_dims=n_features, |
| 247 | + batch_shape=n_outputs, |
| 248 | + ) |
| 249 | + |
| 250 | + def rbf_plus_constant(n_features, n_outputs): |
| 251 | + return ( |
| 252 | + gpytorch.kernels.RBFKernel( |
| 253 | + ard_num_dims=n_features, |
| 254 | + batch_shape=n_outputs, |
| 255 | + ).initialize(lengthscale=torch.ones(n_features) * 1.5) |
| 256 | + + gpytorch.kernels.ConstantKernel() |
| 257 | + ) |
| 258 | + |
| 259 | + # combinations |
| 260 | + def rbf_plus_linear(n_features, n_outputs): |
| 261 | + return gpytorch.kernels.RBFKernel( |
| 262 | + ard_num_dims=n_features, |
| 263 | + batch_shape=n_outputs, |
| 264 | + ) + gpytorch.kernels.LinearKernel( |
| 265 | + ard_num_dims=n_features, |
| 266 | + batch_shape=n_outputs, |
| 267 | + ) |
| 268 | + |
| 269 | + def matern_5_2_plus_rq(n_features, n_outputs): |
| 270 | + return gpytorch.kernels.MaternKernel( |
| 271 | + nu=2.5, |
| 272 | + ard_num_dims=n_features, |
| 273 | + batch_shape=n_outputs, |
| 274 | + ) + gpytorch.kernels.RQKernel( |
| 275 | + ard_num_dims=n_features, |
| 276 | + batch_shape=n_outputs, |
| 277 | + ) |
| 278 | + |
| 279 | + def rbf_times_linear(n_features, n_outputs): |
| 280 | + return gpytorch.kernels.RBFKernel( |
| 281 | + ard_num_dims=n_features, |
| 282 | + batch_shape=n_outputs, |
| 283 | + ) * gpytorch.kernels.LinearKernel( |
| 284 | + ard_num_dims=n_features, |
| 285 | + batch_shape=n_outputs, |
| 286 | + ) |
| 287 | + |
| 288 | + # means |
| 289 | + def constant_mean(n_features, n_outputs): |
| 290 | + return gpytorch.means.ConstantMean(batch_shape=n_outputs) |
| 291 | + |
| 292 | + def zero_mean(n_features, n_outputs): |
| 293 | + return gpytorch.means.ZeroMean(batch_shape=n_outputs) |
| 294 | + |
| 295 | + def linear_mean(n_features, n_outputs): |
| 296 | + return gpytorch.means.LinearMean( |
| 297 | + input_size=n_features, batch_shape=n_outputs |
| 298 | + ) |
| 299 | + |
| 300 | + def poly_mean(n_features, n_outputs): |
| 301 | + return PolyMean(degree=2, input_size=n_features, batch_shape=n_outputs) |
| 302 | + |
| 303 | + if search_type == "random": |
| 304 | + param_space = { |
| 305 | + "covar_module": [ |
| 306 | + rbf, |
| 307 | + matern_5_2_kernel, |
| 308 | + matern_3_2_kernel, |
| 309 | + rq_kernel, |
| 310 | + rbf_plus_constant, |
| 311 | + rbf_plus_linear, |
| 312 | + rbf_times_linear, |
| 313 | + matern_5_2_plus_rq, |
| 314 | + ], |
| 315 | + "mean_module": [ |
| 316 | + constant_mean, |
| 317 | + zero_mean, |
| 318 | + linear_mean, |
| 319 | + poly_mean, |
| 320 | + ], |
| 321 | + "optimizer": [torch.optim.AdamW, torch.optim.Adam], |
| 322 | + "lr": [5e-1, 1e-1, 5e-2, 1e-2], |
| 323 | + "max_epochs": [ |
| 324 | + 50, |
| 325 | + 100, |
| 326 | + 200, |
| 327 | + ], |
| 328 | + } |
| 329 | + else: |
| 330 | + raise ValueError("search_type must be 'random'") |
| 331 | + |
| 332 | + return param_space |
| 333 | + |
| 334 | + @property |
| 335 | + def model_name(self): |
| 336 | + return self.__class__.__name__ |
| 337 | + |
| 338 | + def _more_tags(self): |
| 339 | + # TODO: is it really non-deterministic? |
| 340 | + return {"multioutput": True, "non_deterministic": True} |
0 commit comments