|
| 1 | +import matplotlib.pyplot as plt |
| 2 | +import numpy as np |
| 3 | +import pandas as pd |
| 4 | +from SALib.analyze.sobol import analyze |
| 5 | +from SALib.sample.sobol import sample |
| 6 | + |
| 7 | +from autoemulate.utils import _ensure_2d |
| 8 | + |
| 9 | + |
| 10 | +def _sensitivity_analysis( |
| 11 | + model, problem=None, X=None, N=1024, conf_level=0.95, as_df=True |
| 12 | +): |
| 13 | + """Perform Sobol sensitivity analysis on a fitted emulator. |
| 14 | +
|
| 15 | + Parameters: |
| 16 | + ----------- |
| 17 | + model : fitted emulator model |
| 18 | + The emulator model to analyze. |
| 19 | + problem : dict |
| 20 | + The problem definition, including 'num_vars', 'names', and 'bounds', optional 'output_names'. |
| 21 | + Example: |
| 22 | + ```python |
| 23 | + problem = { |
| 24 | + "num_vars": 2, |
| 25 | + "names": ["x1", "x2"], |
| 26 | + "bounds": [[0, 1], [0, 1]], |
| 27 | + } |
| 28 | + ``` |
| 29 | + N : int, optional |
| 30 | + The number of samples to generate (default is 1024). |
| 31 | + conf_level : float, optional |
| 32 | + The confidence level for the confidence intervals (default is 0.95). |
| 33 | + as_df : bool, optional |
| 34 | + If True, return a pandas DataFrame (default is True). |
| 35 | +
|
| 36 | + Returns: |
| 37 | + -------- |
| 38 | + pd.DataFrame or dict |
| 39 | + If as_df is True, returns a long-format DataFrame with the sensitivity indices. |
| 40 | + Otherwise, returns a dictionary where each key is the name of an output variable and each value is a dictionary |
| 41 | + containing the Sobol indices keys ‘S1’, ‘S1_conf’, ‘ST’, and ‘ST_conf’, where each entry |
| 42 | + is a list of length corresponding to the number of parameters. |
| 43 | + """ |
| 44 | + Si = _sobol_analysis(model, problem, X, N, conf_level) |
| 45 | + |
| 46 | + if as_df: |
| 47 | + return _sobol_results_to_df(Si) |
| 48 | + else: |
| 49 | + return Si |
| 50 | + |
| 51 | + |
| 52 | +def _check_problem(problem): |
| 53 | + """ |
| 54 | + Check that the problem definition is valid. |
| 55 | + """ |
| 56 | + if not isinstance(problem, dict): |
| 57 | + raise ValueError("problem must be a dictionary.") |
| 58 | + |
| 59 | + if "num_vars" not in problem: |
| 60 | + raise ValueError("problem must contain 'num_vars'.") |
| 61 | + if "names" not in problem: |
| 62 | + raise ValueError("problem must contain 'names'.") |
| 63 | + if "bounds" not in problem: |
| 64 | + raise ValueError("problem must contain 'bounds'.") |
| 65 | + |
| 66 | + if len(problem["names"]) != problem["num_vars"]: |
| 67 | + raise ValueError("Length of 'names' must match 'num_vars'.") |
| 68 | + if len(problem["bounds"]) != problem["num_vars"]: |
| 69 | + raise ValueError("Length of 'bounds' must match 'num_vars'.") |
| 70 | + |
| 71 | + return problem |
| 72 | + |
| 73 | + |
| 74 | +def _get_output_names(problem, num_outputs): |
| 75 | + """ |
| 76 | + Get the output names from the problem definition or generate default names. |
| 77 | + """ |
| 78 | + # check if output_names is given |
| 79 | + if "output_names" not in problem: |
| 80 | + output_names = [f"y{i+1}" for i in range(num_outputs)] |
| 81 | + else: |
| 82 | + if isinstance(problem["output_names"], list): |
| 83 | + output_names = problem["output_names"] |
| 84 | + else: |
| 85 | + raise ValueError("'output_names' must be a list of strings.") |
| 86 | + |
| 87 | + return output_names |
| 88 | + |
| 89 | + |
| 90 | +def _generate_problem(X): |
| 91 | + """ |
| 92 | + Generate a problem definition from a design matrix. |
| 93 | + """ |
| 94 | + if X.ndim == 1: |
| 95 | + raise ValueError("X must be a 2D array.") |
| 96 | + |
| 97 | + return { |
| 98 | + "num_vars": X.shape[1], |
| 99 | + "names": [f"x{i+1}" for i in range(X.shape[1])], |
| 100 | + "bounds": [[X[:, i].min(), X[:, i].max()] for i in range(X.shape[1])], |
| 101 | + } |
| 102 | + |
| 103 | + |
| 104 | +def _sobol_analysis(model, problem=None, X=None, N=1024, conf_level=0.95): |
| 105 | + """ |
| 106 | + Perform Sobol sensitivity analysis on a fitted emulator. |
| 107 | +
|
| 108 | + Parameters: |
| 109 | + ----------- |
| 110 | + model : fitted emulator model |
| 111 | + The emulator model to analyze. |
| 112 | + problem : dict |
| 113 | + The problem definition, including 'num_vars', 'names', and 'bounds'. |
| 114 | + N : int, optional |
| 115 | + The number of samples to generate (default is 1000). |
| 116 | +
|
| 117 | + Returns: |
| 118 | + -------- |
| 119 | + dict |
| 120 | + A dictionary where each key is the name of an output variable and each value is a dictionary |
| 121 | + containing the Sobol indices keys ‘S1’, ‘S1_conf’, ‘ST’, and ‘ST_conf’, where each entry |
| 122 | + is a list of length corresponding to the number of parameters. |
| 123 | + """ |
| 124 | + # get problem |
| 125 | + if problem is not None: |
| 126 | + problem = _check_problem(problem) |
| 127 | + elif X is not None: |
| 128 | + problem = _generate_problem(X) |
| 129 | + else: |
| 130 | + raise ValueError("Either problem or X must be provided.") |
| 131 | + |
| 132 | + # saltelli sampling |
| 133 | + param_values = sample(problem, N) |
| 134 | + |
| 135 | + # evaluate |
| 136 | + Y = model.predict(param_values) |
| 137 | + Y = _ensure_2d(Y) |
| 138 | + |
| 139 | + num_outputs = Y.shape[1] |
| 140 | + output_names = _get_output_names(problem, num_outputs) |
| 141 | + |
| 142 | + # single or multiple output sobol analysis |
| 143 | + results = {} |
| 144 | + for i in range(num_outputs): |
| 145 | + Si = analyze(problem, Y[:, i], conf_level=conf_level) |
| 146 | + results[output_names[i]] = Si |
| 147 | + |
| 148 | + return results |
| 149 | + |
| 150 | + |
| 151 | +def _sobol_results_to_df(results): |
| 152 | + """ |
| 153 | + Convert Sobol results to a (long-format)pandas DataFrame. |
| 154 | +
|
| 155 | + Parameters: |
| 156 | + ----------- |
| 157 | + results : dict |
| 158 | + The Sobol indices returned by sobol_analysis. |
| 159 | +
|
| 160 | + Returns: |
| 161 | + -------- |
| 162 | + pd.DataFrame |
| 163 | + A DataFrame with columns: 'output', 'parameter', 'index', 'value', 'confidence'. |
| 164 | + """ |
| 165 | + rows = [] |
| 166 | + for output, indices in results.items(): |
| 167 | + for index_type in ["S1", "ST", "S2"]: |
| 168 | + values = indices.get(index_type) |
| 169 | + conf_values = indices.get(f"{index_type}_conf") |
| 170 | + if values is None or conf_values is None: |
| 171 | + continue |
| 172 | + |
| 173 | + if index_type in ["S1", "ST"]: |
| 174 | + rows.extend( |
| 175 | + { |
| 176 | + "output": output, |
| 177 | + "parameter": f"X{i+1}", |
| 178 | + "index": index_type, |
| 179 | + "value": value, |
| 180 | + "confidence": conf, |
| 181 | + } |
| 182 | + for i, (value, conf) in enumerate(zip(values, conf_values)) |
| 183 | + ) |
| 184 | + |
| 185 | + elif index_type == "S2": |
| 186 | + n = values.shape[0] |
| 187 | + rows.extend( |
| 188 | + { |
| 189 | + "output": output, |
| 190 | + "parameter": f"X{i+1}-X{j+1}", |
| 191 | + "index": index_type, |
| 192 | + "value": values[i, j], |
| 193 | + "confidence": conf_values[i, j], |
| 194 | + } |
| 195 | + for i in range(n) |
| 196 | + for j in range(i + 1, n) |
| 197 | + if not np.isnan(values[i, j]) |
| 198 | + ) |
| 199 | + |
| 200 | + return pd.DataFrame(rows) |
| 201 | + |
| 202 | + |
| 203 | +# plotting -------------------------------------------------------------------- |
| 204 | + |
| 205 | + |
| 206 | +def _validate_input(results, index): |
| 207 | + if not isinstance(results, pd.DataFrame): |
| 208 | + results = _sobol_results_to_df(results) |
| 209 | + # we only want to plot one index type at a time |
| 210 | + valid_indices = ["S1", "S2", "ST"] |
| 211 | + if index not in valid_indices: |
| 212 | + raise ValueError( |
| 213 | + f"Invalid index type: {index}. Must be one of {valid_indices}." |
| 214 | + ) |
| 215 | + return results[results["index"].isin([index])] |
| 216 | + |
| 217 | + |
| 218 | +def _calculate_layout(n_outputs, n_cols=None): |
| 219 | + if n_cols is None: |
| 220 | + n_cols = 3 if n_outputs >= 3 else n_outputs |
| 221 | + n_rows = int(np.ceil(n_outputs / n_cols)) |
| 222 | + return n_rows, n_cols |
| 223 | + |
| 224 | + |
| 225 | +def _create_bar_plot(ax, output_data, output_name): |
| 226 | + """Create a bar plot for a single output.""" |
| 227 | + bar_color = "#4C4B63" |
| 228 | + x_pos = np.arange(len(output_data)) |
| 229 | + |
| 230 | + bars = ax.bar( |
| 231 | + x_pos, |
| 232 | + output_data["value"], |
| 233 | + color=bar_color, |
| 234 | + yerr=output_data["confidence"].values / 2, |
| 235 | + capsize=3, |
| 236 | + ) |
| 237 | + |
| 238 | + ax.set_xticks(x_pos) |
| 239 | + ax.set_xticklabels(output_data["parameter"], rotation=45, ha="right") |
| 240 | + ax.set_ylabel("Sobol Index") |
| 241 | + ax.set_title(f"Output: {output_name}") |
| 242 | + |
| 243 | + |
| 244 | +def _plot_sensitivity_analysis(results, index="S1", n_cols=None, figsize=None): |
| 245 | + """ |
| 246 | + Plot the sensitivity analysis results. |
| 247 | +
|
| 248 | + Parameters: |
| 249 | + ----------- |
| 250 | + results : pd.DataFrame |
| 251 | + The results from sobol_results_to_df. |
| 252 | + index : str, default "S1" |
| 253 | + The type of sensitivity index to plot. |
| 254 | + - "S1": first-order indices |
| 255 | + - "S2": second-order/interaction indices |
| 256 | + - "ST": total-order indices |
| 257 | + n_cols : int, optional |
| 258 | + The number of columns in the plot. Defaults to 3 if there are 3 or more outputs, |
| 259 | + otherwise the number of outputs. |
| 260 | + figsize : tuple, optional |
| 261 | + Figure size as (width, height) in inches.If None, automatically calculated. |
| 262 | +
|
| 263 | + """ |
| 264 | + with plt.style.context("fast"): |
| 265 | + # prepare data |
| 266 | + results = _validate_input(results, index) |
| 267 | + unique_outputs = results["output"].unique() |
| 268 | + n_outputs = len(unique_outputs) |
| 269 | + |
| 270 | + # layout |
| 271 | + n_rows, n_cols = _calculate_layout(n_outputs, n_cols) |
| 272 | + figsize = figsize or (4.5 * n_cols, 4 * n_rows) |
| 273 | + |
| 274 | + fig, axes = plt.subplots(n_rows, n_cols, figsize=figsize) |
| 275 | + if isinstance(axes, np.ndarray): |
| 276 | + axes = axes.flatten() |
| 277 | + elif n_outputs == 1: |
| 278 | + axes = [axes] |
| 279 | + |
| 280 | + for ax, output in zip(axes, unique_outputs): |
| 281 | + output_data = results[results["output"] == output] |
| 282 | + _create_bar_plot(ax, output_data, output) |
| 283 | + |
| 284 | + # remove any empty subplots |
| 285 | + for idx in range(len(unique_outputs), len(axes)): |
| 286 | + fig.delaxes(axes[idx]) |
| 287 | + |
| 288 | + index_names = { |
| 289 | + "S1": "First-Order", |
| 290 | + "S2": "Second-order/Interaction", |
| 291 | + "ST": "Total-Order", |
| 292 | + } |
| 293 | + |
| 294 | + # title |
| 295 | + fig.suptitle( |
| 296 | + f"{index_names[index]} indices and 95% CI", |
| 297 | + fontsize=14, |
| 298 | + ) |
| 299 | + |
| 300 | + plt.tight_layout() |
| 301 | + # prevent double plotting in notebooks |
| 302 | + plt.close(fig) |
| 303 | + |
| 304 | + return fig |
0 commit comments