@@ -156,7 +156,7 @@ def bootstrap(
156156 x : TensorLike ,
157157 y : TensorLike ,
158158 n_bootstraps : int | None = 100 ,
159- n_samples : int = 100 ,
159+ n_samples : int = 1000 ,
160160 device : str | torch .device = "cpu" ,
161161 metrics : list [TorchMetrics ] | None = None ,
162162) -> dict [str , tuple [float , float ]]:
@@ -177,7 +177,7 @@ def bootstrap(
177177 Defaults to 100.
178178 n_samples: int
179179 Number of samples to generate to predict mean when emulator does not have a
180- mean directly available. Defaults to 100 .
180+ mean directly available. Defaults to 1000 .
181181 device: str | torch.device
182182 The device to use for computations. Default is "cpu".
183183 metrics: list[MetricConfig] | None
@@ -200,7 +200,7 @@ def bootstrap(
200200 y_pred = model .predict (x )
201201 results = {}
202202 for metric in metrics :
203- score = evaluate (y_pred , y , metric )
203+ score = evaluate (y_pred , y , metric = metric , n_samples = n_samples )
204204 results [metric .name ] = (score , float ("nan" ))
205205 return results
206206
@@ -218,11 +218,13 @@ def bootstrap(
218218 y_bootstrap = y [idxs ]
219219
220220 # Make predictions
221- y_pred = model .predict_mean (x_bootstrap , n_samples = n_samples )
221+ y_pred = model .predict (x_bootstrap )
222222
223223 # Compute metrics for this bootstrap sample
224224 for metric in metrics :
225- metric_scores [metric .name ][i ] = evaluate (y_pred , y_bootstrap , metric )
225+ metric_scores [metric .name ][i ] = evaluate (
226+ y_pred , y_bootstrap , metric = metric , n_samples = n_samples
227+ )
226228
227229 # Return mean and std for each metric
228230 return {
0 commit comments