Closed
Description
It appears the Queue only supports the "fork" starting method for multiprocessing
. Had I used "spawn" context, I would get the following error.
Traceback (most recent call last):
File "/home/costa/Documents/work/go/src/github.com/vwxyzjn/cleanrl/cleanrl/experiments/multiprocessing_cuda.py", line 23, in <module>
for p in procs: p.start()
File "/home/costa/anaconda3/lib/python3.8/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "/home/costa/anaconda3/lib/python3.8/multiprocessing/context.py", line 283, in _Popen
return Popen(process_obj)
File "/home/costa/anaconda3/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 32, in __init__
super().__init__(process_obj)
File "/home/costa/anaconda3/lib/python3.8/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "/home/costa/anaconda3/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 47, in _launch
reduction.dump(process_obj, fp)
File "/home/costa/anaconda3/lib/python3.8/multiprocessing/reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
PicklingError: Can't pickle <class '__main__.c_ubyte_Array_2'>: attribute lookup c_ubyte_Array_2 on __main__ failed
Example script below:
import torch
from torch import multiprocessing as mp
from faster_fifo import Queue as FastQueue
def producer(data_q):
while True:
data = [1,2,3]
data_q.put(data)
def learner(data_q):
while True:
data = data_q.get()
print(data)
if __name__ == '__main__':
ctx = mp.get_context("spawn")
data_q = FastQueue(1)
procs = [
ctx.Process(target=producer, args=(data_q,)) for _ in range(2)
]
procs.append(ctx.Process(target=learner, args=(data_q,)))
for p in procs: p.start()
for p in procs: p.join()
Was wondering if there is any quick fix to this? Thanks.
Metadata
Metadata
Assignees
Labels
No labels