-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode_template.tex
252 lines (210 loc) · 10.1 KB
/
code_template.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass{article}
\usepackage[margin=1in]{geometry}
\usepackage{amsmath,amsthm,amssymb,amsfonts, fancyhdr, color, comment, graphicx, environ}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{mdframed}
\usepackage[shortlabels]{enumitem}
\usepackage{indentfirst}
\usepackage{hyperref}
\usepackage{mathtools} % added 2021-09-24
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=blue,
}
\pagestyle{fancy}
\newenvironment{problem}[2][Problem]
{ \begin{mdframed}[backgroundcolor=gray!20] \textbf{#1 #2}\\}
{ \end{mdframed}}
\newenvironment{impdef}[1]
{ \begin{mdframed}[backgroundcolor=green!10] \textbf{#1} \vspace{0.15cm}\\}
{ \end{mdframed}}
\newenvironment{regdef}[2][Def.]
{ \begin{mdframed}[backgroundcolor=yellow!10] \textbf{#1} {#2}. \vspace{0.05cm}\\}
{ \end{mdframed}}
\newenvironment{theorem}[2][Thm.]
{ \begin{mdframed}[backgroundcolor=blue!10] \textbf{#1} {#2} \vspace{0.2cm}\\}
{ \end{mdframed}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define solution environment
\newenvironment{solution}[2][Solution.]
{ \begin{mdframed}[] \textbf{#1 #2} \\}
{ \end{mdframed}}
% Define proof environment
\newenvironment{prf}[2][Proof.]
{ \begin{mdframed}[] \textbf{#1 #2} \\}
{ \end{mdframed}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Fill in the appropriate information below
\lhead{}
\rhead{MAT157: Alex R}
\chead{\textbf{W1 Properties and order relations on $\R$}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% my commands, ignore these if you want
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\T}{\mathcal{T}}
\newcommand{\pf}{\textit{Proof. }}
\newcommand{\lm}{\textit{Lemma. }}
\newcommand{\union}{\cup}
\newcommand{\inter}{\cap}
\newcommand{\ep}{\hfill $\blacksquare$\nl}
\newcommand{\ec}{\hfill $\square$\nn}
\begin{document}
\begin{impdef}{FUNCTION}
If $A$ and $B$ are sets, a \textit{function} is a unique assignment of every element in $A$ to an element of $B$. We write $f: A \to B$ to denote a function.
\begin{itemize}
\item $\textbf{Domain} = A$
\item $\textbf{Codomain} = B$
\item $\textbf{Range} = f(A) = \{f(x): x \in A\} \subseteq B$
\end{itemize}
\end{impdef}
\begin{regdef}{Well-defined function}
A map $f: A \to B$ is \textit{well-defined}, if $(\forall x, y \in A)[x=y \Rightarrow f(x)=f(y)]$.
\end{regdef}
\begin{impdef}{INJECTIVITY}
A function $f: A \to B$ is \textit{injective}, if $(\forall x, y \in A)[f(x)=f(y) \Rightarrow x=y]$.
\begin{itemize}
\item[\textbf{--}] Every $A$ has unique $B$.
\item[\textbf{--}] Every $B$ comes from unique $A$ or nothing at all.
\end{itemize}
\end{impdef}
\begin{impdef}{SURJECTIVITY}
A function $f: A \to B$ is \textit{surjective}, if $(\forall y \in B)[\exists x \in A, f(x) = y]$.
\begin{itemize}
\item[\textbf{--}] Every element in the codomain is obtainable.
\end{itemize}
\end{impdef}
\begin{impdef}{BIJECTIVITY}
A function $f: A \to B$ is \textit{bijective}, if it is both \textit{injective} and \textit{surjective}.
\begin{itemize}
\item[\textbf{--}] Every element is obtainable in a unique way.
\item[\textbf{--}] There is matching between elements of $A$ and $B$, i.e. function $f$ is \textit{invertible}.
\end{itemize}
\end{impdef}
\begin{regdef}{Cardinality}
\textit{Cardinality} of a set $S$ is the a measure of the "number of elements" in $S$, denoted $|S|$.
\begin{itemize}
\item \textbf{Injectivity.} If there is an injection from $S\to T$, then $|S| \le |T|$.
\item \textbf{Countability.} A set $S$ is \textit{countable}, if $|S| \le |\N|$.
\item \textbf{Bijectivity.} $|S| = |T|$, if there exists a bijection $S\to T$.
\end{itemize}
\end{regdef}
\begin{theorem}{\textbf{[Cantor–Bernstein-Schröder]}, a.k.a. the \textbf{CBT}}
If $S$, $T$ are two sets with $|S| \le |T|$ and $|T| \le |S|$, then $|S| = |T|$.
\begin{itemize}
\item[\textbf{--}] "Left injection" + "Right injection" = "Bijection".
\end{itemize}
\end{theorem}
\clearpage
\begin{theorem}{Transitivity of injectivity.}
If $f: B\to C$ and $g: A\to B$ are both injective then their composition $f \circ g$ is also injective.
\end{theorem}
\begin{prf}{}
By the definition of injectivity, we have the following.
\[(\forall a_1, a_2)[g(a_1) = g(a_2) \Rightarrow a_1 = a_2]\]
\[(\forall b_1, b_2)[f(b_1) = f(b_2) \Rightarrow b_1 = b_2]\]
Want to show, the following.
\[(\forall a_1, a_2)[f(g(a_1)) = f(g(a_2)) \Rightarrow a_1 = a_2]\]
Assume that $f(g(a_1)) = f(g(a_2))$.
\begin{itemize}
\item Since $f$ is injective, $g(a_1) = g(a_2)$.
\item Since $g$ is injective, $a_1 = a_2$.
\end{itemize} \ep
\end{prf}
\begin{problem}{1.}
If $f: B \to C$ and $g: A\to B$ are such that $f \circ g$ is injective, then $g$ is injective. Also, $f$ does not have to be injective.
\end{problem}
\begin{solution}{}
We have the following.
\[(\forall a, b)[f(g(a)) = f(g(b)) \Rightarrow a = b]\]
Want to show the following.
\[(\forall a, b)[g(a) = g(b) \Rightarrow a = b]\]
Assume $g(a) = g(b)$.
\begin{itemize}
\item Since $f$ is a well-defined function, $f(g(a)) = f(g(b))$.
\item Since $f \circ g$ is injective, $a = b$.
\end{itemize} \ec
\end{solution}
\clearpage
\begin{impdef}{INVERTIBILITY}
\textit{Inverse} of a function $f:A\to B$ is a function $f^{-1}:B\to A$ that satisfies $f^{-1} \circ f = \text{id}_A$ and $f \circ f^{-1} = \text{id}_B$.
\begin{itemize}
\item Function is called \textit{left-invertible}, if $f^{-1} \circ f = \text{id}_A$.
\item Function is called \textit{right-invertible}, if $f\circ f^{-1} = \text{id}_B$.
\end{itemize}
\end{impdef}
\begin{theorem}{Injectivity $\Leftrightarrow$ Left-invertibility}
Suppose $g: A\to B$ is a function. Then $g$ is injective if and only if there exists a function $h: B\to A$ such that $(h\circ g) = \text{id}_A$.
\end{theorem}
\begin{prf}{($\Longleftarrow$), (mimics Problem 1.)}
We have that $h \circ g = \text{id}_A$, consequently the following is true.
\[(\forall a,b \in A)[h(g(a)) = h(g(b)) \Rightarrow a = b]\]
Want to show the following.
\[(\forall a,b \in A)[g(a) = g(b) \Rightarrow a = b]\]
Find the exact solution in \textbf{Problem 1.}
\end{prf}
\begin{prf}{($\Longrightarrow$)}
The function can be defined explicitly.
\begin{enumerate}
\item Fix some element $a_0 \in A$.
\item Define $h: B\to A$ as
$\left[h(b) = \begin{cases}
\hfill
a & \text{if $g(a) = b$}\\
a_0 & \text{otherwise}
\end{cases}\right]$.
\end{enumerate}
\[(h\circ g)(a) = h(g(a)) = a, \hspace{0,5cm}\text{so we have}\hspace{0,5cm} h\circ g = \text{id}_A\]\ep
\end{prf}
\begin{theorem}{Surjectivity $\Leftrightarrow$ Right-invertibility}
Suppose $g: A\to B$ is a function. Then $g$ is injective if and only if there exists a function $h: B\to A$ such that $(g\circ h) = \text{id}_B$.
\end{theorem}
\begin{theorem}{\textbf{BIJECTIVITY $\Leftrightarrow$ INVERTIBILITY}}
A function $f: A \to B$ is bijective $\Leftrightarrow$ $f$ has an inverse.
\end{theorem}
\clearpage
\begin{theorem}{\textit{A countable union of (disjoint) countable sets is countable.}}
For any collection $\left\{A_i: i \in I, |A_i| \le |\N|\right\}$ where $|I| \le |\N|$, we have $|\union_{i\in I} A_i| \le |\N|$.
\begin{itemize}
\item[\textbf{--}] "Countability squared" = "Countability"
\end{itemize}
\end{theorem}
\begin{prf}{}
We know $\exists f: I \xhookrightarrow{} \N$ which is injective, and $(\forall i \in I)[\exists g_i: A_i \xhookrightarrow{} \N]$ which is injective. \vspace{0.25cm}
Define a map $$F: \bigcup_{i\in I} A_i \to \N, \hspace{0.25cm} a \mapsto 2^{f(n)}\cdot 3^{g_n(a)}, \hspace{0.25cm} \text{where $a \in A_n$.}$$
Power of $2$ tracks the set. Power of $3$ tracks the element within the set. By the \textit{Fundamental Theorem of Arithmetic}, $F$ is truly injective. \ep
\end{prf}
\begin{theorem}{$|\N| = |\Z| = |\Q|$}
Integers and rationals are countable.
\end{theorem}
\begin{prf}{}
Proof if these facts is fairly simply.
\begin{enumerate}
\item $\N \subset \Z \subset \Q \Rightarrow |\N| \le |\Z| \le |\Q|$
\item $\Z = \{-1, 0, 1\} \times \N \Rightarrow |\Z| \le |\N|$, according to the properties of a countable union of countable sets.
\item $\Q = \N \times \Z \Rightarrow |\Q| \le |\N|$, according to the properties of a countable union of countable sets.
\end{enumerate}
Thus, integers and rationals are truly countable.
\end{prf}
\begin{theorem}{$|\R| > |\N|$}
The set of real numbers is not countable.
\end{theorem}
\begin{prf}{"Gaussian Diagonalization"}
This is just an instruction for the proof.
\begin{enumerate}
\item Prove that $|(0, 1)| = |\R|$.
\item For the sake of contradiction, assume that $|(0, 1)| = |\N|$.
\item "Invert" all digits on the diagonal, avoiding assigning the $base-1$ digit.
\item The obtained number is real and will not match with any of our numbers.
\item Since we claimed to write down all real numbers this is a contradiction.
\ep
\end{enumerate}
\end{prf}
\end{document}