-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathtrain.py
357 lines (315 loc) · 18.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import errno
import json
import os
import random
import time
import numpy as np
import tensorflow as tf
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)),'..')))
from video_prediction import datasets, models
def add_tag_suffix(summary, tag_suffix):
summary_proto = tf.Summary()
summary_proto.ParseFromString(summary)
summary = summary_proto
for value in summary.value:
tag_split = value.tag.split('/')
value.tag = '/'.join([tag_split[0] + tag_suffix] + tag_split[1:])
return summary.SerializeToString()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", type=str, required=True, help="either a directory containing subdirectories "
"train, val, test, etc, or a directory containing "
"the tfrecords")
parser.add_argument("--val_input_dir", type=str, help="directories containing the tfrecords. default: input_dir")
parser.add_argument("--logs_dir", default='logs', help="ignored if output_dir is specified")
parser.add_argument("--output_dir", help="output directory where json files, summary, model, gifs, etc are saved. "
"default is logs_dir/model_fname, where model_fname consists of "
"information from model and model_hparams")
parser.add_argument("--output_dir_postfix", default="")
parser.add_argument("--checkpoint", help="directory with checkpoint or checkpoint name (e.g. checkpoint_dir/model-200000)")
parser.add_argument("--resume", action='store_true', help='resume from lastest checkpoint in output_dir.')
parser.add_argument("--dataset", type=str, help="dataset class name")
parser.add_argument("--dataset_hparams", type=str, help="a string of comma separated list of dataset hyperparameters")
parser.add_argument("--dataset_hparams_dict", type=str, help="a json file of dataset hyperparameters")
parser.add_argument("--model", type=str, help="model class name")
parser.add_argument("--model_hparams", type=str, help="a string of comma separated list of model hyperparameters")
parser.add_argument("--model_hparams_dict", type=str, help="a json file of model hyperparameters")
parser.add_argument("--summary_freq", type=int, default=1000, help="save frequency of summaries (except for image and eval summaries) for train/validation set")
parser.add_argument("--image_summary_freq", type=int, default=5000, help="save frequency of image summaries for train/validation set")
parser.add_argument("--eval_summary_freq", type=int, default=25000, help="save frequency of eval summaries for train/validation set")
parser.add_argument("--accum_eval_summary_freq", type=int, default=100000, help="save frequency of accumulated eval summaries for validation set only")
parser.add_argument("--progress_freq", type=int, default=100, help="display progress every progress_freq steps")
parser.add_argument("--save_freq", type=int, default=5000, help="save frequence of model, 0 to disable")
parser.add_argument("--aggregate_nccl", type=int, default=0, help="whether to use nccl or cpu for gradient aggregation in multi-gpu training")
parser.add_argument("--gpu_mem_frac", type=float, default=0, help="fraction of gpu memory to use")
parser.add_argument("--seed", type=int)
args = parser.parse_args()
if args.seed is not None:
tf.set_random_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
if args.output_dir is None:
list_depth = 0
model_fname = ''
for t in ('model=%s,%s' % (args.model, args.model_hparams)):
if t == '[':
list_depth += 1
if t == ']':
list_depth -= 1
if list_depth and t == ',':
t = '..'
if t in '=,':
t = '.'
if t in '[]':
t = ''
model_fname += t
args.output_dir = os.path.join(args.logs_dir, model_fname) + args.output_dir_postfix
if args.resume:
if args.checkpoint:
raise ValueError('resume and checkpoint cannot both be specified')
args.checkpoint = args.output_dir
dataset_hparams_dict = {}
model_hparams_dict = {}
if args.dataset_hparams_dict:
with open(args.dataset_hparams_dict) as f:
dataset_hparams_dict.update(json.loads(f.read()))
if args.model_hparams_dict:
with open(args.model_hparams_dict) as f:
model_hparams_dict.update(json.loads(f.read()))
if args.checkpoint:
checkpoint_dir = os.path.normpath(args.checkpoint)
if not os.path.isdir(args.checkpoint):
checkpoint_dir, _ = os.path.split(checkpoint_dir)
if not os.path.exists(checkpoint_dir):
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), checkpoint_dir)
with open(os.path.join(checkpoint_dir, "options.json")) as f:
print("loading options from checkpoint %s" % args.checkpoint)
options = json.loads(f.read())
args.dataset = args.dataset or options['dataset']
args.model = args.model or options['model']
try:
with open(os.path.join(checkpoint_dir, "dataset_hparams.json")) as f:
dataset_hparams_dict.update(json.loads(f.read()))
except FileNotFoundError:
print("dataset_hparams.json was not loaded because it does not exist")
try:
with open(os.path.join(checkpoint_dir, "model_hparams.json")) as f:
model_hparams_dict.update(json.loads(f.read()))
except FileNotFoundError:
print("model_hparams.json was not loaded because it does not exist")
print('----------------------------------- Options ------------------------------------')
for k, v in args._get_kwargs():
print(k, "=", v)
print('------------------------------------- End --------------------------------------')
VideoDataset = datasets.get_dataset_class(args.dataset)
train_dataset = VideoDataset(
args.input_dir,
mode='train',
hparams_dict=dataset_hparams_dict,
hparams=args.dataset_hparams)
val_dataset = VideoDataset(
args.val_input_dir or args.input_dir,
mode='val',
hparams_dict=dataset_hparams_dict,
hparams=args.dataset_hparams)
if val_dataset.hparams.long_sequence_length != val_dataset.hparams.sequence_length:
# the longer dataset is only used for the accum_eval_metrics
long_val_dataset = VideoDataset(
args.val_input_dir or args.input_dir,
mode='val',
hparams_dict=dataset_hparams_dict,
hparams=args.dataset_hparams)
long_val_dataset.set_sequence_length(val_dataset.hparams.long_sequence_length)
else:
long_val_dataset = None
variable_scope = tf.get_variable_scope()
variable_scope.set_use_resource(True)
VideoPredictionModel = models.get_model_class(args.model)
hparams_dict = dict(model_hparams_dict)
hparams_dict.update({
'context_frames': train_dataset.hparams.context_frames,
'sequence_length': train_dataset.hparams.sequence_length,
'repeat': train_dataset.hparams.time_shift,
})
model = VideoPredictionModel(
hparams_dict=hparams_dict,
hparams=args.model_hparams,
aggregate_nccl=args.aggregate_nccl)
batch_size = model.hparams.batch_size
train_tf_dataset = train_dataset.make_dataset(batch_size)
train_iterator = train_tf_dataset.make_one_shot_iterator()
train_handle = train_iterator.string_handle()
val_tf_dataset = val_dataset.make_dataset(batch_size)
val_iterator = val_tf_dataset.make_one_shot_iterator()
val_handle = val_iterator.string_handle()
iterator = tf.data.Iterator.from_string_handle(
train_handle, train_tf_dataset.output_types, train_tf_dataset.output_shapes)
inputs = iterator.get_next()
# inputs comes from the training dataset by default, unless train_handle is remapped to the val_handles
model.build_graph(inputs)
if long_val_dataset is not None:
# separately build a model for the longer sequence.
# this is needed because the model doesn't support dynamic shapes.
long_hparams_dict = dict(hparams_dict)
long_hparams_dict['sequence_length'] = long_val_dataset.hparams.sequence_length
# use smaller batch size for longer model to prevenet running out of memory
long_hparams_dict['batch_size'] = model.hparams.batch_size // 2
long_model = VideoPredictionModel(
mode="test", # to not build the losses and discriminators
hparams_dict=long_hparams_dict,
hparams=args.model_hparams,
aggregate_nccl=args.aggregate_nccl)
tf.get_variable_scope().reuse_variables()
long_model.build_graph(long_val_dataset.make_batch(batch_size))
else:
long_model = None
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
with open(os.path.join(args.output_dir, "options.json"), "w") as f:
f.write(json.dumps(vars(args), sort_keys=True, indent=4))
with open(os.path.join(args.output_dir, "dataset_hparams.json"), "w") as f:
f.write(json.dumps(train_dataset.hparams.values(), sort_keys=True, indent=4))
with open(os.path.join(args.output_dir, "model_hparams.json"), "w") as f:
f.write(json.dumps(model.hparams.values(), sort_keys=True, indent=4))
with tf.name_scope("parameter_count"):
# exclude trainable variables that are replicas (used in multi-gpu setting)
trainable_variables = set(tf.trainable_variables()) & set(model.saveable_variables)
parameter_count = tf.reduce_sum([tf.reduce_prod(tf.shape(v)) for v in trainable_variables])
saver = tf.train.Saver(var_list=model.saveable_variables, max_to_keep=2)
# None has the special meaning of evaluating at the end, so explicitly check for non-equality to zero
if (args.summary_freq != 0 or args.image_summary_freq != 0 or
args.eval_summary_freq != 0 or args.accum_eval_summary_freq != 0):
summary_writer = tf.summary.FileWriter(args.output_dir)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_mem_frac)
config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)
global_step = tf.train.get_or_create_global_step()
max_steps = model.hparams.max_steps
with tf.Session(config=config) as sess:
print("parameter_count =", sess.run(parameter_count))
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
model.restore(sess, args.checkpoint)
sess.run(model.post_init_ops)
val_handle_eval = sess.run(val_handle)
sess.graph.finalize()
start_step = sess.run(global_step)
def should(step, freq):
if freq is None:
return (step + 1) == (max_steps - start_step)
else:
return freq and ((step + 1) % freq == 0 or (step + 1) in (0, max_steps - start_step))
def should_eval(step, freq):
# never run eval summaries at the beginning since it's expensive, unless it's the last iteration
return should(step, freq) and (step >= 0 or (step + 1) == (max_steps - start_step))
# start at one step earlier to log everything without doing any training
# step is relative to the start_step
for step in range(-1, max_steps - start_step):
if step == 1:
# skip step -1 and 0 for timing purposes (for warmstarting)
start_time = time.time()
fetches = {"global_step": global_step}
if step >= 0:
fetches["train_op"] = model.train_op
if should(step, args.progress_freq):
fetches['d_loss'] = model.d_loss
fetches['g_loss'] = model.g_loss
fetches['d_losses'] = model.d_losses
fetches['g_losses'] = model.g_losses
if isinstance(model.learning_rate, tf.Tensor):
fetches["learning_rate"] = model.learning_rate
if should(step, args.summary_freq):
fetches["summary"] = model.summary_op
if should(step, args.image_summary_freq):
fetches["image_summary"] = model.image_summary_op
if should_eval(step, args.eval_summary_freq):
fetches["eval_summary"] = model.eval_summary_op
run_start_time = time.time()
results = sess.run(fetches)
run_elapsed_time = time.time() - run_start_time
if run_elapsed_time > 1.5 and step > 0 and set(fetches.keys()) == {"global_step", "train_op"}:
print('running train_op took too long (%0.1fs)' % run_elapsed_time)
if (should(step, args.summary_freq) or
should(step, args.image_summary_freq) or
should_eval(step, args.eval_summary_freq)):
val_fetches = {"global_step": global_step}
if should(step, args.summary_freq):
val_fetches["summary"] = model.summary_op
if should(step, args.image_summary_freq):
val_fetches["image_summary"] = model.image_summary_op
if should_eval(step, args.eval_summary_freq):
val_fetches["eval_summary"] = model.eval_summary_op
val_results = sess.run(val_fetches, feed_dict={train_handle: val_handle_eval})
for name, summary in val_results.items():
if name == 'global_step':
continue
val_results[name] = add_tag_suffix(summary, '_1')
if should(step, args.summary_freq):
print("recording summary")
summary_writer.add_summary(results["summary"], results["global_step"])
summary_writer.add_summary(val_results["summary"], val_results["global_step"])
print("done")
if should(step, args.image_summary_freq):
print("recording image summary")
summary_writer.add_summary(results["image_summary"], results["global_step"])
summary_writer.add_summary(val_results["image_summary"], val_results["global_step"])
print("done")
if should_eval(step, args.eval_summary_freq):
print("recording eval summary")
summary_writer.add_summary(results["eval_summary"], results["global_step"])
summary_writer.add_summary(val_results["eval_summary"], val_results["global_step"])
print("done")
if should_eval(step, args.accum_eval_summary_freq):
val_datasets = [val_dataset]
val_models = [model]
if long_model is not None:
val_datasets.append(long_val_dataset)
val_models.append(long_model)
for i, (val_dataset_, val_model) in enumerate(zip(val_datasets, val_models)):
sess.run(val_model.accum_eval_metrics_reset_op)
# traverse (roughly up to rounding based on the batch size) all the validation dataset
accum_eval_summary_num_updates = val_dataset_.num_examples_per_epoch() // val_model.hparams.batch_size
val_fetches = {"global_step": global_step, "accum_eval_summary": val_model.accum_eval_summary_op}
for update_step in range(accum_eval_summary_num_updates):
print('evaluating %d / %d' % (update_step + 1, accum_eval_summary_num_updates))
val_results = sess.run(val_fetches, feed_dict={train_handle: val_handle_eval})
accum_eval_summary = add_tag_suffix(val_results["accum_eval_summary"], '_%d' % (i + 1))
print("recording accum eval summary")
summary_writer.add_summary(accum_eval_summary, val_results["global_step"])
print("done")
if (should(step, args.summary_freq) or should(step, args.image_summary_freq) or
should_eval(step, args.eval_summary_freq) or should_eval(step, args.accum_eval_summary_freq)):
summary_writer.flush()
if should(step, args.progress_freq):
# global_step will have the correct step count if we resume from a checkpoint
# global step is read before it's incremented
steps_per_epoch = train_dataset.num_examples_per_epoch() / batch_size
train_epoch = results["global_step"] / steps_per_epoch
print("progress global step %d epoch %0.1f" % (results["global_step"] + 1, train_epoch))
if step > 0:
elapsed_time = time.time() - start_time
average_time = elapsed_time / step
images_per_sec = batch_size / average_time
remaining_time = (max_steps - (start_step + step + 1)) * average_time
print(" image/sec %0.1f remaining %dm (%0.1fh) (%0.1fd)" %
(images_per_sec, remaining_time / 60, remaining_time / 60 / 60, remaining_time / 60 / 60 / 24))
if results['d_losses']:
print("d_loss", results["d_loss"])
for name, loss in results['d_losses'].items():
print(" ", name, loss)
if results['g_losses']:
print("g_loss", results["g_loss"])
for name, loss in results['g_losses'].items():
print(" ", name, loss)
if isinstance(model.learning_rate, tf.Tensor):
print("learning_rate", results["learning_rate"])
if should(step, args.save_freq):
print("saving model to", args.output_dir)
saver.save(sess, os.path.join(args.output_dir, "model"), global_step=global_step)
print("done")
if __name__ == '__main__':
main()