-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmallet.py
94 lines (62 loc) · 2.57 KB
/
mallet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Isaac Julien
# Mallet partial interface
import os
class Mallet:
def __init__(self):
self.mallet_directory = "../mallet-2.0.7/" # Mallet code directory (not including /bin/)
self.text_examples_file = "examples_file.txt" # Text file used to store examples line by line
self.mallet_examples_file = "examples_file.mallet" # File used by mallet
self.xval_k = 10 # K for K-fold xval
self.trainer = "DecisionTree" # Training algorithm to use
# Form a Mallet-readable line where the first field is a name for the example,
# the second is a label, and the rest are features:
def __form_line(self, label, features):
line = str(label)
for i in range(len(features)):
line += "\t" + str(i) + ":" + str(features[i])
return line
# Write examples (in dictionary format) to file:
def __write_to_file(self, examples):
f = open(self.text_examples_file, 'w')
for ex in examples:
line = self.__form_line(ex["label"], ex["features"])
f.write(line + "\n")
# Read file into mallet and output to mallet_examples_file:
def read_into_mallet(self, infile):
command = self.mallet_directory + "bin/mallet import-svmlight --input " + infile + \
" --output " + self.mallet_examples_file
self.__run_command(command)
# Classify data with training portion and trainer specified above
def classify(self):
command = self.mallet_directory + "bin/mallet train-classifier " + \
"--input " + self.mallet_examples_file + " " + \
"--cross-validation " + str(self.xval_k) + " --trainer " + self.trainer + \
" --trainer MaxEnt --trainer NaiveBayes --verbosity 4"
self.__run_command(command)
def classify_options(self):
command = self.mallet_directory + "bin/mallet train-classifier --help"
self.__run_command(command)
# Run a command:
def __run_command(self, command):
os.system(command)
def test(self):
exs = []
for i in range(30):
ex1 = {"label":0, "features":[0.0]}
ex2 = {"label":1, "features":[1.0]}
exs.append(ex1)
exs.append(ex2)
self.__write_to_file(exs)
self.read_into_mallet("examples_file.txt")
self.classify()
def classify():
mallet = Mallet()
mallet.read_into_mallet("topicinfo.csv")
mallet.classify()
def options():
Mallet().classify_options()
def main():
#options()
classify()
if __name__ == "__main__":
main()