Skip to content

Qwen3-VL-4B-Instruct 量化后推理结果异常 #3992

@Coloured-glaze

Description

@Coloured-glaze

量化

Image

推理

Image

代码

import MNN.llm as llm
import MNN.cv as cv, MNN.numpy as np
import argparse, os 

current_path = os.path.dirname(os.path.abspath(__file__))

def generate_example(model, prompt):
    prompt['text'] = model.apply_chat_template(prompt['text'])
    ids = model.tokenizer_encode(prompt)
    model.generate_init()
    logits = model.forward(ids)
    token = np.argmax(logits)
    model.context.current_token = token
    first_token = model.tokenizer_decode(token)
    print(f"token: {token}, first_token: {first_token}")
    print(first_token, end='', flush=True) # first token
    while True:
        logits = model.forward(token)
        token = np.argmax(logits)
        model.context.current_token = token
        if model.stoped(): break
        try:
            word = model.tokenizer_decode(token)
        except Exception as e:
            print(f"解码token {token} {type(token)} 时出错: {str(e)}")
            word = ""
        print(word, end='', flush=True)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', type=str, default=os.path.join(current_path, 'Qwen3-VL-4B-Instruct-MNN_Q8'))
    parser.add_argument('--img_path', type=str, default=os.path.join(current_path, 'cat.jpg'))
    args = parser.parse_args()
    img_path = args.img_path; 
    if not os.path.exists(img_path): print('image not exists'); exit(1)
    config_path = os.path.join(args.model_path, 'config.json')
    model = llm.create(config_path) # create model
    model.load() # load model
    img = cv.imread(img_path)
    if img is None: print('read image failed'); exit(1)

    prompt_list = [
        "简要描述图片内容",
        "详细描述图片内容",
        "用自然语言简单描述图片",
        "用自然语言详细描述图片",
        "简单描述图片,减少形容词使用",
    ]
    for prompt_text in prompt_list:
        prompt = {
            'text': '<img>image_0</img>' + prompt_text,
            'images': [
                { 'data': img, 'height': 420, 'width': 420 }
            ]
        }
        generate_example(model, prompt)
        print()

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions