forked from triton-inference-server/client
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient.js
140 lines (118 loc) · 5.13 KB
/
client.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
const grpc = require('@grpc/grpc-js');
const protoLoader = require('@grpc/proto-loader');
const util = require('util');
const PROTO_PATH = __dirname + '/proto/grpc_service.proto';
const PROTO_IMPORT_PATH = __dirname + '/proto'
const GRPCServicePackageDefinition = protoLoader.loadSync(PROTO_PATH, {
includeDirs: [PROTO_IMPORT_PATH],
keepCase: true,
longs: String,
enums: String,
defaults: true,
oneofs: true
});
function BufferToInt32Array(buf) {
newArray = new Int32Array(buf.byteLength / 4)
dv = new DataView(buf.buffer)
for (let i = 0; i < newArray.length; i++) {
newArray[i] = dv.getInt32(buf.byteOffset + (i * 4), littleEndian = true);
}
return newArray
}
const inference = grpc.loadPackageDefinition(GRPCServicePackageDefinition).inference;
async function main() {
const argv = process.argv.slice(2)
const host = argv.length > 0 ? argv[0] : "localhost";
const port = argv.length > 1 ? argv[1] : "8001";
const model_name = "simple";
const model_version = "";
const batch_size = 1
const dimension = 16
const client = new inference.GRPCInferenceService(host + ':' + port, grpc.credentials.createInsecure());
const serverLive = util.promisify(client.serverLive).bind(client);
const serverReady = util.promisify(client.serverReady).bind(client);
const modelMetadata = util.promisify(client.modelMetadata).bind(client);
const modelInfer = util.promisify(client.modelInfer).bind(client);
serverLiveResponse = await serverLive({});
console.log("Triton Health - Live:", serverLiveResponse.live);
if(!serverLiveResponse.live) {
console.error("Triton is not Live")
process.exit(1);
}
serverReadyResponse = await serverReady({});
console.log("Triton Health - Ready:", serverReadyResponse.ready);
if(!serverReadyResponse.ready) {
console.error("Triton is not Ready")
process.exit(1);
}
modelMetadataResponse = await modelMetadata({ name: model_name, version: model_version });
console.log("\nModel Info:", modelMetadataResponse)
// Input Data
// Use input dimension [batch_size, dimension]
const input0_data = Array(batch_size * dimension).fill().map((element, index) => index)
const input1_data = Array(batch_size * dimension).fill().map((element, index) => index)
const input0 = {
name: "INPUT0",
datatype: "INT32",
shape: [batch_size, dimension],
contents: {
int_contents: input0_data
}
}
const input1 = {
name: "INPUT1",
datatype: "INT32",
shape: [batch_size, dimension],
contents: {
int_contents: input1_data
}
}
const modelInferRequest = {
model_name: model_name,
model_version: model_version,
inputs: [input0, input1],
outputs: [
{ name: "OUTPUT0" },
{ name: "OUTPUT1" }
]
}
const outputs = await modelInfer(modelInferRequest);
output_data = outputs.raw_output_contents.map(BufferToInt32Array);
console.log("\nChecking Inference Output")
console.log("-------------------------")
for (let i = 0; i < dimension; i++) {
console.log(input0_data[i] + " + " + input1_data[i] + " = " + output_data[0][i])
console.log(input0_data[i] + " - " + input1_data[i] + " = " + output_data[1][i])
if (((input0_data[i] + input1_data[i]) != output_data[0][i]) ||
((input0_data[i] - input1_data[i]) != output_data[1][i])) {
console.error("Unexpected results encountered")
process.exit(1);
}
}
}
main()