forked from triton-inference-server/client
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_http_string_infer_client.py
executable file
·198 lines (172 loc) · 7.35 KB
/
simple_http_string_infer_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/env python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import sys
import numpy as np
import tritonclient.http as httpclient
# unicode() doesn't exist on python3, for how we use it the
# corresponding function is bytes()
if sys.version_info.major == 3:
unicode = bytes
def simple_string_inference(triton_client):
model_name = "simple_string"
inputs = []
outputs = []
inputs.append(httpclient.InferInput("INPUT0", [1, 16], "BYTES"))
inputs.append(httpclient.InferInput("INPUT1", [1, 16], "BYTES"))
# Create the data for the two input tensors. Initialize the first
# to unique integers and the second to all ones.
in0 = np.arange(start=0, stop=16, dtype=np.int32)
in0 = np.expand_dims(in0, axis=0)
in1 = np.ones(shape=(1, 16), dtype=np.int32)
expected_sum = np.add(in0, in1)
expected_diff = np.subtract(in0, in1)
# The 'simple_string' model expects 2 BYTES tensors where each
# element in those tensors is the utf-8 string representation of
# an integer. The BYTES tensors must be represented by a numpy
# array with dtype=np.object_.
in0n = np.array(
[str(x).encode("utf-8") for x in in0.reshape(in0.size)], dtype=np.object_
)
input0_data = in0n.reshape(in0.shape)
in1n = np.array(
[str(x).encode("utf-8") for x in in1.reshape(in1.size)], dtype=np.object_
)
input1_data = in1n.reshape(in1.shape)
# Initialize the data
inputs[0].set_data_from_numpy(input0_data, binary_data=True)
inputs[1].set_data_from_numpy(input1_data, binary_data=False)
outputs.append(httpclient.InferRequestedOutput("OUTPUT0", binary_data=True))
outputs.append(httpclient.InferRequestedOutput("OUTPUT1", binary_data=False))
results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)
# Get the output arrays from the results
output0_data = results.as_numpy("OUTPUT0")
output1_data = results.as_numpy("OUTPUT1")
for i in range(16):
print(
str(input0_data[0][i])
+ " + "
+ str(input1_data[0][i])
+ " = "
+ str(output0_data[0][i])
)
print(
str(input0_data[0][i])
+ " - "
+ str(input1_data[0][i])
+ " = "
+ str(output1_data[0][i])
)
# Convert result from string to int to check result
r0 = int(output0_data[0][i])
r1 = int(output1_data[0][i])
if expected_sum[0][i] != r0:
print("error: incorrect sum")
sys.exit(1)
if expected_diff[0][i] != r1:
print("error: incorrect difference")
sys.exit(1)
def identity_inference(triton_client, np_array, binary_data):
model_name = "simple_identity"
inputs = []
outputs = []
inputs.append(httpclient.InferInput("INPUT0", np_array.shape, "BYTES"))
inputs[0].set_data_from_numpy(np_array, binary_data=binary_data)
outputs.append(httpclient.InferRequestedOutput("OUTPUT0", binary_data=binary_data))
results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)
if np_array.dtype == np.object_:
print(results.as_numpy("OUTPUT0"))
if binary_data:
if not np.array_equal(np_array, results.as_numpy("OUTPUT0")):
print(results.as_numpy("OUTPUT0"))
print("error: incorrect output")
sys.exit(1)
else:
expected_array = np.array(
[
unicode(str(x), encoding="utf-8")
for x in results.as_numpy("OUTPUT0").flatten()
],
dtype=np.object_,
)
expected_array = expected_array.reshape([1, 16])
if not np.array_equal(np_array, expected_array):
print(results.as_numpy("OUTPUT0"))
print("error: incorrect output")
sys.exit(1)
else:
encoded_results = np.char.encode(results.as_numpy("OUTPUT0").astype(str))
if not np.array_equal(np_array, encoded_results):
print(encoded_results)
print("error: incorrect output")
sys.exit(1)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="Enable verbose output",
)
parser.add_argument(
"-u",
"--url",
type=str,
required=False,
default="localhost:8000",
help="Inference server URL. Default is localhost:8000.",
)
FLAGS = parser.parse_args()
try:
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose
)
except Exception as e:
print("context creation failed: " + str(e))
sys.exit()
# Example using BYTES input tensors with utf-8 encoded string
# elements
simple_string_inference(triton_client)
# Example using BYTES input tensor with utf-8 encoded string that
# has an embedded null character.
null_chars_array = np.array(
["he\x00llo".encode("utf-8") for i in range(16)], dtype=np.object_
)
null_char_data = null_chars_array.reshape([1, 16])
identity_inference(triton_client, null_char_data, True) # Using binary data
identity_inference(triton_client, null_char_data, False) # Using JSON data
# Example using BYTES input tensor with 16 elements, where each
# element is a 4-byte binary blob with value 0x00010203. Can use
# dtype=np.bytes_ in this case.
bytes_data = [b"\x00\x01\x02\x03" for i in range(16)]
np_bytes_data = np.array(bytes_data, dtype=np.bytes_)
np_bytes_data = np_bytes_data.reshape([1, 16])
identity_inference(triton_client, np_bytes_data, True) # Using binary data
identity_inference(triton_client, np_bytes_data, False) # Using JSON data
print("PASS: string")