-
Notifications
You must be signed in to change notification settings - Fork 448
Description
For some reason, I have to use ELMo in Keras platform. When I try to write a Keras Layer for ELMo, I notice that when the input of BidirectionalLanguageModel is keras.layer.Input, the whole program will be stuck, but if the input is tf.placeholder, it will go through the code successfully but Keras model doesn't allow a non-Input input layer. How can I fix this? Please help me.
The layer is implemented like:
`
class ElmoEmbeddingLayer(Layer):
def __init__(self, config, **kwargs):
self.dimensions = 200
self.options_file = config.options_file
self.weights_file = config.weights_file
self.token_embedding_file = config.token_embedding_file
self.bilm = BidirectionalLanguageModel(
self.options_file,
self.weights_file,
use_character_inputs=False,
embedding_weight_file=self.token_embedding_file,
max_batch_size=1024
)
super(ElmoEmbeddingLayer, self).__init__(**kwargs)
def build(self, input_shape):
super(ElmoEmbeddingLayer, self).build(input_shape)
def call(self, x, mask=None):
context_embeddings_op = self.bilm(x)
elmo_embedding = weight_layers('elmo_output', context_embeddings_op, l2_coef=0.0)
elmo_embedding = elmo_embedding['weighted_op']
return elmo_embedding
def compute_mask(self, inputs, mask=None):
return K.not_equal(inputs, 0)
def compute_output_shape(self, input_shape):
return input_shape[0], input_shape[1], self.dimensions`
And when I use it I just:
`
elmo_model = ElmoEmbeddingLayer(self.data_config)
tmp = tf.placeholder(tf.int32, shape=(None, None))
char_ids = Input(batch_shape=(None, None), dtype='int32', name='input_ids')
elmo_embeddings = elmo_model(char_ids)
lstm_output_1 = Bidirectional(LSTM(units=_char_lstm_size, return_sequences=True))(elmo_embeddings)
`
By using "char_ids", it will be stuck; if I use "tmp", the model can't be formed for regarding non-Input layers as the input of model.