|
| 1 | +#pragma once |
| 2 | + |
| 3 | +#include <alpaka/alpaka.hpp> |
| 4 | + |
| 5 | +#include <experimental/mdspan> |
| 6 | + |
| 7 | +using Data = float; |
| 8 | +using Dim3 = alpaka::DimInt<3>; |
| 9 | +using Idx = std::uint32_t; |
| 10 | + |
| 11 | +const Idx nx = 512; // Number of cells in x direction |
| 12 | +const Idx ny = 512; // Number of cells in y direction |
| 13 | +const Idx nz = 512; // Number of cells in z direction |
| 14 | + |
| 15 | +// Kernel to initialize the simulation variables |
| 16 | +struct InitializerKernel |
| 17 | +{ |
| 18 | + template<typename TAcc, typename MdSpan> |
| 19 | + ALPAKA_FN_ACC auto operator()( |
| 20 | + TAcc const& acc, |
| 21 | + MdSpan density, |
| 22 | + MdSpan energy, |
| 23 | + MdSpan pressure, |
| 24 | + MdSpan velocityX, |
| 25 | + MdSpan velocityY, |
| 26 | + MdSpan velocityZ) const -> void |
| 27 | + { |
| 28 | + // Get thread index, the center of filter-matrix is positioned to the item on this index. |
| 29 | + auto const i = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0]; |
| 30 | + auto const j = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[1]; |
| 31 | + auto const k = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[2]; |
| 32 | + |
| 33 | + if(i < nx && j < ny && k < nz) |
| 34 | + { |
| 35 | + density(i, j, k) = 1.0f; // Initial density |
| 36 | + energy(i, j, k) = 1.0f; // Initial energy |
| 37 | + pressure(i, j, k) = 1.0f; // Initial pressure |
| 38 | + velocityX(i, j, k) = 0.0f; // Initial velocity in x direction |
| 39 | + velocityY(i, j, k) = 0.0f; // Initial velocity in y direction |
| 40 | + velocityZ(i, j, k) = 0.0f; // Initial velocity in z direction |
| 41 | + } |
| 42 | + } |
| 43 | +}; |
| 44 | + |
| 45 | +// Kernel to compute the equation of state (EOS) and additional calculations |
| 46 | +struct EOSKernel |
| 47 | +{ |
| 48 | + template<typename TAcc, typename MdSpan> |
| 49 | + ALPAKA_FN_ACC auto operator()( |
| 50 | + TAcc const& acc, |
| 51 | + MdSpan density, |
| 52 | + MdSpan energy, |
| 53 | + MdSpan pressure, |
| 54 | + MdSpan velocityX, |
| 55 | + MdSpan velocityY, |
| 56 | + MdSpan velocityZ, |
| 57 | + float gamma) const -> void |
| 58 | + { |
| 59 | + auto const i = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0]; |
| 60 | + auto const j = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[1]; |
| 61 | + auto const k = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[2]; |
| 62 | + |
| 63 | + if(i < nx && j < ny && k < nz) |
| 64 | + { |
| 65 | + // Compute pressure using ideal gas law: P = (gamma - 1) * density * energy |
| 66 | + pressure(i, j, k) = (gamma - 1.0f) * density(i, j, k) * energy(i, j, k); |
| 67 | + |
| 68 | + // Additional calculations to update velocities (this is a simplified example) |
| 69 | + velocityX(i, j, k) += pressure(i, j, k) * 0.1f; |
| 70 | + velocityY(i, j, k) += pressure(i, j, k) * 0.1f; |
| 71 | + velocityZ(i, j, k) += pressure(i, j, k) * 0.1f; |
| 72 | + } |
| 73 | + } |
| 74 | +}; |
| 75 | + |
| 76 | +// Kernel for Flux calculations |
| 77 | +struct FluxKernel |
| 78 | +{ |
| 79 | + template<typename TAcc, typename MdSpan> |
| 80 | + ALPAKA_FN_ACC auto operator()( |
| 81 | + TAcc const& acc, |
| 82 | + MdSpan density, |
| 83 | + MdSpan energy, |
| 84 | + MdSpan pressure, |
| 85 | + MdSpan velocityX, |
| 86 | + MdSpan velocityY, |
| 87 | + MdSpan velocityZ, |
| 88 | + MdSpan fluxDensity, |
| 89 | + MdSpan fluxEnergy, |
| 90 | + MdSpan fluxVelocityX, |
| 91 | + MdSpan fluxVelocityY, |
| 92 | + MdSpan fluxVelocityZ) const -> void |
| 93 | + { |
| 94 | + auto const i = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0]; |
| 95 | + auto const j = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[1]; |
| 96 | + auto const k = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[2]; |
| 97 | + |
| 98 | + if(i < nx && j < ny && k < nz) |
| 99 | + { |
| 100 | + // Compute fluxes (this is a simplified example) |
| 101 | + fluxDensity(i, j, k) = density(i, j, k) * velocityX(i, j, k); |
| 102 | + fluxEnergy(i, j, k) = energy(i, j, k) * velocityX(i, j, k); |
| 103 | + fluxVelocityX(i, j, k) = velocityX(i, j, k) * velocityX(i, j, k) + pressure(i, j, k); |
| 104 | + fluxVelocityY(i, j, k) = velocityY(i, j, k) * velocityX(i, j, k); |
| 105 | + fluxVelocityZ(i, j, k) = velocityZ(i, j, k) * velocityX(i, j, k); |
| 106 | + } |
| 107 | + } |
| 108 | +}; |
| 109 | + |
| 110 | +// Kernel for the advection step |
| 111 | +struct AdvectionKernel |
| 112 | +{ |
| 113 | + template<typename TAcc, typename MdSpan> |
| 114 | + ALPAKA_FN_ACC auto operator()( |
| 115 | + TAcc const& acc, |
| 116 | + MdSpan density, |
| 117 | + MdSpan velocityX, |
| 118 | + MdSpan velocityY, |
| 119 | + MdSpan velocityZ) const -> void |
| 120 | + { |
| 121 | + auto const i = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0]; |
| 122 | + auto const j = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[1]; |
| 123 | + auto const k = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[2]; |
| 124 | + |
| 125 | + if(i < nx && j < ny && k < nz) |
| 126 | + { |
| 127 | + // Simple advection calculation (this is a simplified example) |
| 128 | + density(i, j, k) += (velocityX(i, j, k) + velocityY(i, j, k) + velocityZ(i, j, k)) * 0.01f; |
| 129 | + } |
| 130 | + } |
| 131 | +}; |
| 132 | + |
| 133 | +struct LagrangianKernel |
| 134 | +{ |
| 135 | + template<typename TAcc, typename MdSpan> |
| 136 | + ALPAKA_FN_ACC auto operator()( |
| 137 | + TAcc const& acc, |
| 138 | + MdSpan density, |
| 139 | + MdSpan energy, |
| 140 | + MdSpan velocityX, |
| 141 | + MdSpan velocityY, |
| 142 | + MdSpan velocityZ, |
| 143 | + MdSpan fluxDensity, |
| 144 | + MdSpan fluxEnergy, |
| 145 | + MdSpan fluxVelocityX, |
| 146 | + MdSpan fluxVelocityY, |
| 147 | + MdSpan fluxVelocityZ) const -> void |
| 148 | + { |
| 149 | + auto const i = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0]; |
| 150 | + auto const j = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[1]; |
| 151 | + auto const k = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[2]; |
| 152 | + |
| 153 | + if(i < nx && j < ny && k < nz) |
| 154 | + { |
| 155 | + // Update the cell-centered variables based on flux calculations |
| 156 | + density(i, j, k) -= fluxDensity(i, j, k) * 0.1f; |
| 157 | + energy(i, j, k) -= fluxEnergy(i, j, k) * 0.1f; |
| 158 | + velocityX(i, j, k) -= fluxVelocityX(i, j, k) * 0.1f; |
| 159 | + velocityY(i, j, k) -= fluxVelocityY(i, j, k) * 0.1f; |
| 160 | + velocityZ(i, j, k) -= fluxVelocityZ(i, j, k) * 0.1f; |
| 161 | + } |
| 162 | + } |
| 163 | +}; |
| 164 | + |
| 165 | +struct ViscosityKernel |
| 166 | +{ |
| 167 | + template<typename TAcc, typename MdSpan> |
| 168 | + ALPAKA_FN_ACC auto operator()( |
| 169 | + TAcc const& acc, |
| 170 | + MdSpan density, |
| 171 | + MdSpan velocityX, |
| 172 | + MdSpan velocityY, |
| 173 | + MdSpan velocityZ, |
| 174 | + MdSpan pressure, |
| 175 | + MdSpan viscosity) const -> void |
| 176 | + { |
| 177 | + auto const i = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0]; |
| 178 | + auto const j = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[1]; |
| 179 | + auto const k = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[2]; |
| 180 | + |
| 181 | + if(i < nx && j < ny && k < nz) |
| 182 | + { |
| 183 | + // Calculate artificial viscosity (this is a simplified example) |
| 184 | + float gradVx = (velocityX(i + 1, j, k) - velocityX(i - 1, j, k)) * 0.5f; |
| 185 | + float gradVy = (velocityY(i, j + 1, k) - velocityY(i, j - 1, k)) * 0.5f; |
| 186 | + float gradVz = (velocityZ(i, j, k + 1) - velocityZ(i, j, k - 1)) * 0.5f; |
| 187 | + |
| 188 | + viscosity(i, j, k) = density(i, j, k) * (gradVx * gradVx + gradVy * gradVy + gradVz * gradVz) * 0.01f; |
| 189 | + |
| 190 | + // Apply viscosity to pressure |
| 191 | + pressure(i, j, k) += viscosity(i, j, k); |
| 192 | + } |
| 193 | + } |
| 194 | +}; |
| 195 | + |
| 196 | +struct MaxVelocityKernel |
| 197 | +{ |
| 198 | + template<typename TAcc, typename MdSpan> |
| 199 | + ALPAKA_FN_ACC auto operator()( |
| 200 | + TAcc const& acc, |
| 201 | + MdSpan velocityX, |
| 202 | + MdSpan velocityY, |
| 203 | + MdSpan velocityZ, |
| 204 | + float* maxVelocity) const -> void |
| 205 | + { |
| 206 | + auto const i = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0]; |
| 207 | + auto const j = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[1]; |
| 208 | + auto const k = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[2]; |
| 209 | + |
| 210 | + if(i < nx && j < ny && k < nz) |
| 211 | + { |
| 212 | + float vx = velocityX(i, j, k); |
| 213 | + float vy = velocityY(i, j, k); |
| 214 | + float vz = velocityZ(i, j, k); |
| 215 | + float v = alpaka::math::sqrt(acc, (vx * vx + vy * vy + vz * vz)); |
| 216 | + |
| 217 | + // Atomic operation to find the maximum velocity |
| 218 | + alpaka::atomicMax(acc, maxVelocity, v); |
| 219 | + } |
| 220 | + } |
| 221 | +}; |
| 222 | + |
| 223 | +[[maybe_unused]] static float calculateTimeStep(float dx, float dy, float dz, float maxVelocity, float cMax) |
| 224 | +{ |
| 225 | + // Compute the smallest grid spacing |
| 226 | + float minDx = std::min({dx, dy, dz}); |
| 227 | + |
| 228 | + // Calculate the time step based on the CFL condition |
| 229 | + float dt = cMax * minDx / maxVelocity; |
| 230 | + |
| 231 | + return dt; |
| 232 | +} |
0 commit comments