-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcommon.wgsl
executable file
·188 lines (159 loc) · 5.27 KB
/
common.wgsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#define_import_path shadplay::shader_utils::common
// The circle family
const PI:f32 = 3.14159265359;
const HALF_PI = 1.57079632679;
const NEG_HALF_PI = -1.57079632679;
const NEG_QUARTER_PI = -0.78539816339;
const QUARTER_PI = -0.78539816339;
const TAU:f32 = 6.28318530718;
// Euler's number / Napier's constant
const E: f32 = 2.71828182845;
// Pythagoras' constants
const SQRT_OF_2:f32 = 1.41421356237;
const SQRT_OF_3:f32 = 1.73205080756;
// The golden ratio
const PHI:f32 = 1.61803398874;
/// Turn your `uv` coords into polar coords
fn intoPolar(uv: vec2<f32>)-> vec2<f32>{
return vec2f(atan2(uv.x, uv.y), length(uv));
}
/// Clockwise by `theta`
fn rotate2D(theta: f32) -> mat2x2<f32> {
let c = cos(theta);
let s = sin(theta);
return mat2x2<f32>(c, s, -s, c);
}
/// Move from the HueSaturationValue to RedGreenBlue
fn hsv2rgb(c: vec3f) -> vec3f {
var rgb: vec3f = clamp(
abs((c.x * 6.0 + vec3f(0.0, 4.0, 2.0)) % 6.0 - 3.0) - 1.0,
vec3f(0.0),
vec3f(1.0)
);
return c.z * mix(vec3f(1.0), rgb, c.y);
}
// Signed distance field for a 2D circle
fn sd_circle(pt: vec2f, radius: f32) -> f32 {
return length(pt) - radius;
}
/// This is the default (and rather pretty) shader you start with in ShaderToy
fn shader_toy_default(t: f32, uv: vec2f) -> vec3f {
var col = vec3f(0.0);
let v = vec3(t) + vec3(uv.xyx) + vec3(0., 2., 4.);
return 0.5 + 0.5 * cos(v);
}
fn dist_line(ray_origin: vec3f, ray_dir: vec3f, pt: vec3f) -> f32 {
return length(cross(pt - ray_origin, ray_dir)) / length(ray_dir);
}
fn sd_capsule(p: vec3f, a: vec3f, b: vec3f, r: f32) -> f32 {
let pa = p - a;
let ba = b - a;
let h = clamp(dot(pa, ba) / dot(ba, ba), 0., 1.);
return length(pa - ba * h) - r;
}
fn sd_capped_cylinder(p: vec3f, h: vec2f) -> f32 {
let d: vec2f = abs(vec2f(length(p.xz), p.y)) - h;
return min(max(d.x, d.y), 0.0) + length(max(d, vec2f(0.0)));
}
fn sd_torus(p: vec3f, t: vec2f) -> f32 {
let q: vec2f = vec2f(length(p.xz) - t.x, p.y);
return length(q) - t.y;
}
// License: MIT, author: Inigo Quilez, found: https://iquilezles.org/www/articles/distfunctions2d/distfunctions2d.htm
fn sd_hexagon(p: vec2f, r: f32) -> f32 {
let k = vec3f(-0.866025404, 0.5, 0.577350269);
var q: vec2f = abs(p);
q = q - 2. * min(dot(k.xy, q), 0.) * k.xy;
q = q - vec2f(clamp(q.x, -k.z * r, k.z * r), r);
return length(q) * sign(q.y);
}
/// Signed distance field for a Sphere (3d)
fn sd_sphere(p: vec3f, radius: f32) -> f32 {
return (length(p) - radius);
}
// Hexagonal tiling
fn hextile(_p: vec2f) -> vec2f {
// See Art of Code: Hexagonal Tiling Explained!
// https://www.youtube.com/watch?v=VmrIDyYiJBA
var p = _p;
// Define constants
let sz: vec2f = vec2f(1.0, sqrt(3.0));
let hsz: vec2f = 0.5 * sz;
// Calculate p1 and p2
let p1: vec2f = (p % sz) - hsz;
let p2: vec2f = ((p - hsz) % sz) - hsz;
// Choose p3 based on dot product
var p3: vec2f = vec2(0.);
if dot(p1, p1) < dot(p2, p2) {
p3 = p1;
} else {
p3 = p2;
}
// Calculate n
var n: vec2f = ((p3 - p + hsz) / sz);
p = p3;
// Adjust n and round for well-behaved hextile 0,0
n -= vec2(0.5);
return round(n * 2.0) * 0.5;
}
// From : https://www.shadertoy.com/view/tsBXW3
fn hash(x: f32) -> f32 {
return (fract(sin(x) * 152754.742));
}
/// Signed distance field for a Bezier curve.
fn sd_bezier(p: vec2f, A: vec2f, B: vec2f, C: vec2f) -> vec2f {
let a = B - A;
let b = A - 2. * B + C;
let c = a * 2.;
let d = A - p;
let kk = 1. / dot(b, b);
let kx = kk * dot(a, b);
let ky = kk * (2. * dot(a, a) + dot(d, b)) / 3.;
let kz = kk * dot(d, a);
let p1 = ky - kx * kx;
let p3 = p1 * p1 * p1;
let q = kx * (2.0 * kx * kx - 3.0 * ky) + kz;
var h: f32 = q * q + 4. * p3;
var res: vec2f;
if h >= 0. {
h = sqrt(h);
let x = (vec2f(h, -h) - q) / 2.;
let uv = sign(x) * pow(abs(x), vec2f(1. / 3.));
let t = clamp(uv.x + uv.y - kx, 0., 1.);
let f = d + (c + b * t) * t;
res = vec2f(dot(f, f), t);
} else {
let z = sqrt(-p1);
let v = acos(q / (p1 * z * 2.)) / 3.;
let m = cos(v);
let n = sin(v) * 1.732050808;
let t = clamp(vec2f(m + m, -n - m) * z - kx, vec2f(0.0), vec2f(1.0));
let f = d + (c + b * t.x) * t.x;
var dis: f32 = dot(f, f);
res = vec2f(dis, t.x);
let g = d + (c + b * t.y) * t.y;
dis = dot(g, g);
res = select(res, vec2f(dis, t.y), dis < res.x);
}
res.x = sqrt(res.x);
return res;
}
/// coff
fn coff(h: f32, time: f32) -> vec2<f32> {
let h0: f32 = h;
let h1: f32 = fract(h0 * 9677.0);
let h2: f32 = fract(h0 * 8677.0);
let t: f32 = mix(0.5, 1.0, h2 * h2) * time + 1234.5 * h0;
return mix(vec2<f32>(0.1, 0.1), vec2<f32>(0.2, 0.2), h1 * h1) * sin(t * vec2<f32>(1.0, sqrt(0.5)));
}
/// approx aces colour-space
fn aces_approx(_v: vec3<f32>) -> vec3<f32> {
var v = max(_v, vec3<f32>(0.0, 0.0, 0.0));
v *= 0.6;
let a: f32 = 2.51;
let b: f32 = 0.03;
let c: f32 = 2.43;
let d: f32 = 0.59;
let e: f32 = 0.14;
return clamp((v * (a * v + b)) / (v * (c * v + d) + e), vec3<f32>(0.0, 0.0, 0.0), vec3<f32>(1.0, 1.0, 1.0));
}