forked from dotnet/runtime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblock.h
2565 lines (2150 loc) · 80.9 KB
/
block.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX BasicBlock XX
XX XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
/*****************************************************************************/
#ifndef _BLOCK_H_
#define _BLOCK_H_
/*****************************************************************************/
#include "vartype.h" // For "var_types.h"
#include "_typeinfo.h"
/*****************************************************************************/
// Defines VARSET_TP
#include "varset.h"
#include "jitstd.h"
#include "bitvec.h"
#include "jithashtable.h"
/*****************************************************************************/
typedef BitVec EXPSET_TP;
typedef BitVec_ValArg_T EXPSET_VALARG_TP;
typedef BitVec_ValRet_T EXPSET_VALRET_TP;
#define EXPSET_SZ 64
typedef BitVec ASSERT_TP;
typedef BitVec_ValArg_T ASSERT_VALARG_TP;
typedef BitVec_ValRet_T ASSERT_VALRET_TP;
// We use the following format when printing the BasicBlock number: bbNum
// This define is used with string concatenation to put this in printf format strings (Note that %u means unsigned int)
#define FMT_BB "BB%02u"
// Use this format for loop indices
#define FMT_LP "L%02u"
// Use this format for profile weights
#define FMT_WT "%.7g"
// Use this format for profile weights where we want to conserve horizontal space, at the expense of displaying
// less precision.
#define FMT_WT_NARROW "%.3g"
/*****************************************************************************
*
* Each basic block ends with a jump which is described as a value
* of the following enumeration.
*/
// clang-format off
enum BBKinds : BYTE
{
BBJ_EHFINALLYRET,// block ends with 'endfinally' (for finally)
BBJ_EHFAULTRET, // block ends with 'endfinally' (IL alias for 'endfault') (for fault)
BBJ_EHFILTERRET, // block ends with 'endfilter'
BBJ_EHCATCHRET, // block ends with a leave out of a catch
BBJ_THROW, // block ends with 'throw'
BBJ_RETURN, // block ends with 'ret'
BBJ_ALWAYS, // block always jumps to the target
BBJ_LEAVE, // block always jumps to the target, maybe out of guarded region. Only used until importing.
BBJ_CALLFINALLY, // block always calls the target finally
BBJ_CALLFINALLYRET, // block targets the return from finally, aka "finally continuation". Always paired with BBJ_CALLFINALLY.
BBJ_COND, // block conditionally jumps to the target
BBJ_SWITCH, // block ends with a switch statement
BBJ_COUNT
};
#ifdef DEBUG
const char* const bbKindNames[] = {
"BBJ_EHFINALLYRET",
"BBJ_EHFAULTRET",
"BBJ_EHFILTERRET",
"BBJ_EHCATCHRET",
"BBJ_THROW",
"BBJ_RETURN",
"BBJ_ALWAYS",
"BBJ_LEAVE",
"BBJ_CALLFINALLY",
"BBJ_CALLFINALLYRET",
"BBJ_COND",
"BBJ_SWITCH",
"BBJ_COUNT"
};
#endif // DEBUG
// clang-format on
struct GenTree;
struct Statement;
struct BasicBlock;
class Compiler;
class typeInfo;
struct BasicBlockList;
struct FlowEdge;
struct EHblkDsc;
struct BBswtDesc;
struct BBehfDesc;
struct StackEntry
{
GenTree* val;
typeInfo seTypeInfo;
};
struct EntryState
{
unsigned esStackDepth; // size of esStack
StackEntry* esStack; // ptr to stack
};
// Enumeration of the kinds of memory whose state changes the compiler tracks
enum MemoryKind
{
ByrefExposed = 0, // Includes anything byrefs can read/write (everything in GcHeap, address-taken locals,
// unmanaged heap, callers' locals, etc.)
GcHeap, // Includes actual GC heap, and also static fields
MemoryKindCount, // Number of MemoryKinds
};
#ifdef DEBUG
const char* const memoryKindNames[] = {"ByrefExposed", "GcHeap"};
#endif // DEBUG
// Bitmask describing a set of memory kinds (usable in bitfields)
typedef unsigned int MemoryKindSet;
// Bitmask for a MemoryKindSet containing just the specified MemoryKind
inline MemoryKindSet memoryKindSet(MemoryKind memoryKind)
{
return (1U << memoryKind);
}
// Bitmask for a MemoryKindSet containing the specified MemoryKinds
template <typename... MemoryKinds>
inline MemoryKindSet memoryKindSet(MemoryKind memoryKind, MemoryKinds... memoryKinds)
{
return memoryKindSet(memoryKind) | memoryKindSet(memoryKinds...);
}
// Bitmask containing all the MemoryKinds
const MemoryKindSet fullMemoryKindSet = (1 << MemoryKindCount) - 1;
// Bitmask containing no MemoryKinds
const MemoryKindSet emptyMemoryKindSet = 0;
// Standard iterator class for iterating through MemoryKinds
class MemoryKindIterator
{
int value;
public:
explicit inline MemoryKindIterator(int val)
: value(val)
{
}
inline MemoryKindIterator& operator++()
{
++value;
return *this;
}
inline MemoryKindIterator operator++(int)
{
return MemoryKindIterator(value++);
}
inline MemoryKind operator*()
{
return static_cast<MemoryKind>(value);
}
friend bool operator==(const MemoryKindIterator& left, const MemoryKindIterator& right)
{
return left.value == right.value;
}
friend bool operator!=(const MemoryKindIterator& left, const MemoryKindIterator& right)
{
return left.value != right.value;
}
};
// Empty struct that allows enumerating memory kinds via `for(MemoryKind kind : allMemoryKinds())`
struct allMemoryKinds
{
inline allMemoryKinds()
{
}
inline MemoryKindIterator begin()
{
return MemoryKindIterator(0);
}
inline MemoryKindIterator end()
{
return MemoryKindIterator(MemoryKindCount);
}
};
// Base class for forward iterators over the predecessor edge linked list.
// Subclasses decide what the iterator yields (edge, source block, etc.) by implementing the dereference operator.
// The pred list cannot be modified during iteration unless allowEdits is true.
//
template <bool allowEdits>
class BasePredIterator
{
private:
// When allowEdits=false, try to guard against the user of the iterator from modifying the predecessor list
// being traversed: cache the edge we think should be next, then check it when we actually do the `++`
// operation. This is a bit conservative, but attempts to protect against callers assuming too much about
// this iterator implementation.
// When allowEdits=true, m_next is always used to update m_pred, so changes to m_pred don't break the iterator.
FlowEdge* m_next;
protected:
FlowEdge* m_pred;
BasePredIterator(FlowEdge* pred);
public:
BasePredIterator& operator++();
bool operator!=(const BasePredIterator& i) const
{
return m_pred != i.m_pred;
}
};
// PredEdgeList: adapter class for forward iteration of the predecessor edge linked list using range-based `for`,
// normally used via BasicBlock::PredEdges(), e.g.:
// for (FlowEdge* const edge : block->PredEdges()) ...
// allowEdits controls whether the iterator should be resilient to changes to the predecessor list.
//
template <bool allowEdits>
class PredEdgeList
{
FlowEdge* m_begin;
// Forward iterator for the predecessor edges linked list.
//
class PredEdgeIterator : public BasePredIterator<allowEdits>
{
public:
PredEdgeIterator(FlowEdge* pred)
: BasePredIterator<allowEdits>(pred)
{
}
FlowEdge* operator*() const
{
return this->m_pred;
}
};
public:
PredEdgeList(FlowEdge* pred)
: m_begin(pred)
{
}
PredEdgeIterator begin() const
{
return PredEdgeIterator(m_begin);
}
PredEdgeIterator end() const
{
return PredEdgeIterator(nullptr);
}
};
// PredBlockList: adapter class for forward iteration of the predecessor edge linked list yielding
// predecessor blocks, using range-based `for`, normally used via BasicBlock::PredBlocks(), e.g.:
// for (BasicBlock* const predBlock : block->PredBlocks()) ...
// allowEdits controls whether the iterator should be resilient to changes to the predecessor list.
//
template <bool allowEdits>
class PredBlockList
{
FlowEdge* m_begin;
// Forward iterator for the predecessor edges linked list, yielding the predecessor block, not the edge.
//
class PredBlockIterator : public BasePredIterator<allowEdits>
{
public:
PredBlockIterator(FlowEdge* pred)
: BasePredIterator<allowEdits>(pred)
{
}
BasicBlock* operator*() const;
};
public:
PredBlockList(FlowEdge* pred)
: m_begin(pred)
{
}
PredBlockIterator begin() const
{
return PredBlockIterator(m_begin);
}
PredBlockIterator end() const
{
return PredBlockIterator(nullptr);
}
};
// BBArrayIterator: forward iterator for an array of BasicBlock*.
// It is an error (with assert) to yield a nullptr BasicBlock* in this array.
// `m_edgeEntry` can be nullptr, but it only makes sense if both the begin and end of an iteration range are nullptr
// (meaning, no actual iteration will happen).
//
class BBArrayIterator
{
FlowEdge* const* m_edgeEntry;
public:
BBArrayIterator(FlowEdge* const* edgeEntry)
: m_edgeEntry(edgeEntry)
{
}
BasicBlock* operator*() const;
BBArrayIterator& operator++()
{
assert(m_edgeEntry != nullptr);
++m_edgeEntry;
return *this;
}
bool operator!=(const BBArrayIterator& i) const
{
return m_edgeEntry != i.m_edgeEntry;
}
};
// FlowEdgeArrayIterator: forward iterator for an array of FlowEdge*, such as the BBswtDesc->bbsDstTab.
// It is an error (with assert) to yield a nullptr FlowEdge* in this array.
// `m_edgeEntry` can be nullptr, but it only makes sense if both the begin and end of an iteration range are nullptr
// (meaning, no actual iteration will happen).
//
class FlowEdgeArrayIterator
{
FlowEdge* const* m_edgeEntry;
public:
FlowEdgeArrayIterator(FlowEdge* const* edgeEntry)
: m_edgeEntry(edgeEntry)
{
}
FlowEdge* operator*() const
{
assert(m_edgeEntry != nullptr);
FlowEdge* const edge = *m_edgeEntry;
assert(edge != nullptr);
return edge;
}
FlowEdgeArrayIterator& operator++()
{
assert(m_edgeEntry != nullptr);
++m_edgeEntry;
return *this;
}
bool operator!=(const FlowEdgeArrayIterator& i) const
{
return m_edgeEntry != i.m_edgeEntry;
}
};
// BBSwitchTargetList: adapter class for forward iteration of switch targets, using range-based `for`,
// normally used via BasicBlock::SwitchTargets(), e.g.:
// for (BasicBlock* const target : block->SwitchTargets()) ...
//
class BBSwitchTargetList
{
BBswtDesc* m_bbsDesc;
public:
BBSwitchTargetList(BBswtDesc* bbsDesc);
BBArrayIterator begin() const;
BBArrayIterator end() const;
};
// BBEhfSuccList: adapter class for forward iteration of BBJ_EHFINALLYRET blocks, using range-based `for`,
// normally used via BasicBlock::EHFinallyRetSuccs(), e.g.:
// for (BasicBlock* const succ : block->EHFinallyRetSuccs()) ...
//
class BBEhfSuccList
{
BBehfDesc* m_bbeDesc;
public:
BBEhfSuccList(BBehfDesc* bbeDesc);
BBArrayIterator begin() const;
BBArrayIterator end() const;
};
//------------------------------------------------------------------------
// BasicBlockFlags: a bitmask of flags for BasicBlock
//
// clang-format off
enum BasicBlockFlags : uint64_t
{
#define MAKE_BBFLAG(bit) (1ULL << (bit))
BBF_EMPTY = 0,
BBF_IS_LIR = MAKE_BBFLAG( 0), // Set if the basic block contains LIR (as opposed to HIR)
BBF_MARKED = MAKE_BBFLAG( 1), // BB marked during optimizations
BBF_REMOVED = MAKE_BBFLAG( 2), // BB has been removed from bb-list
BBF_DONT_REMOVE = MAKE_BBFLAG( 3), // BB should not be removed during flow graph optimizations
BBF_IMPORTED = MAKE_BBFLAG( 4), // BB byte-code has been imported
BBF_INTERNAL = MAKE_BBFLAG( 5), // BB has been added by the compiler
BBF_NEEDS_GCPOLL = MAKE_BBFLAG( 6), // BB may need a GC poll because it uses the slow tail call helper
BBF_CLONED_FINALLY_BEGIN = MAKE_BBFLAG( 7), // First block of a cloned finally region
BBF_CLONED_FINALLY_END = MAKE_BBFLAG( 8), // Last block of a cloned finally region
BBF_HAS_NULLCHECK = MAKE_BBFLAG( 9), // BB contains a null check
BBF_HAS_SUPPRESSGC_CALL = MAKE_BBFLAG(10), // BB contains a call to a method with SuppressGCTransitionAttribute
BBF_RUN_RARELY = MAKE_BBFLAG(11), // BB is rarely run (catch clauses, blocks with throws etc)
BBF_LOOP_HEAD = MAKE_BBFLAG(12), // BB is the head of a loop (can reach a predecessor)
BBF_HAS_LABEL = MAKE_BBFLAG(13), // BB needs a label
BBF_LOOP_ALIGN = MAKE_BBFLAG(14), // Block is lexically the first block in a loop we intend to align.
BBF_HAS_ALIGN = MAKE_BBFLAG(15), // BB ends with 'align' instruction
BBF_HAS_JMP = MAKE_BBFLAG(16), // BB executes a JMP instruction (instead of return)
BBF_GC_SAFE_POINT = MAKE_BBFLAG(17), // BB has a GC safe point (e.g. a call)
BBF_HAS_IDX_LEN = MAKE_BBFLAG(18), // BB contains simple index or length expressions on an SD array local var.
BBF_HAS_MD_IDX_LEN = MAKE_BBFLAG(19), // BB contains simple index, length, or lower bound expressions on an MD array local var.
BBF_HAS_MDARRAYREF = MAKE_BBFLAG(20), // Block has a multi-dimensional array reference
BBF_HAS_NEWOBJ = MAKE_BBFLAG(21), // BB contains 'new' of an object type.
BBF_RETLESS_CALL = MAKE_BBFLAG(22), // BBJ_CALLFINALLY that will never return (and therefore, won't need a paired
// BBJ_CALLFINALLYRET); see isBBCallFinallyPair().
BBF_COLD = MAKE_BBFLAG(23), // BB is cold
BBF_PROF_WEIGHT = MAKE_BBFLAG(24), // BB weight is computed from profile data
BBF_KEEP_BBJ_ALWAYS = MAKE_BBFLAG(25), // A special BBJ_ALWAYS block, used by EH code generation. Keep the jump kind
// as BBJ_ALWAYS. Used on x86 for the final step block out of a finally.
BBF_HAS_CALL = MAKE_BBFLAG(26), // BB contains a call
BBF_DOMINATED_BY_EXCEPTIONAL_ENTRY = MAKE_BBFLAG(27), // Block is dominated by exceptional entry.
BBF_BACKWARD_JUMP = MAKE_BBFLAG(28), // BB is surrounded by a backward jump/switch arc
BBF_BACKWARD_JUMP_SOURCE = MAKE_BBFLAG(29), // Block is a source of a backward jump
BBF_BACKWARD_JUMP_TARGET = MAKE_BBFLAG(30), // Block is a target of a backward jump
BBF_PATCHPOINT = MAKE_BBFLAG(31), // Block is a patchpoint
BBF_PARTIAL_COMPILATION_PATCHPOINT = MAKE_BBFLAG(32), // Block is a partial compilation patchpoint
BBF_HAS_HISTOGRAM_PROFILE = MAKE_BBFLAG(33), // BB contains a call needing a histogram profile
BBF_TAILCALL_SUCCESSOR = MAKE_BBFLAG(34), // BB has pred that has potential tail call
BBF_RECURSIVE_TAILCALL = MAKE_BBFLAG(35), // Block has recursive tailcall that may turn into a loop
BBF_NO_CSE_IN = MAKE_BBFLAG(36), // Block should kill off any incoming CSE
BBF_CAN_ADD_PRED = MAKE_BBFLAG(37), // Ok to add pred edge to this block, even when "safe" edge creation disabled
BBF_HAS_VALUE_PROFILE = MAKE_BBFLAG(38), // Block has a node that needs a value probing
BBF_HAS_NEWARR = MAKE_BBFLAG(39), // BB contains 'new' of an array type.
BBF_MAY_HAVE_BOUNDS_CHECKS = MAKE_BBFLAG(40), // BB *likely* has a bounds check (after rangecheck phase).
// The following are sets of flags.
// Flags to update when two blocks are compacted
BBF_COMPACT_UPD = BBF_GC_SAFE_POINT | BBF_NEEDS_GCPOLL | BBF_HAS_JMP | BBF_HAS_IDX_LEN | BBF_HAS_MD_IDX_LEN | BBF_BACKWARD_JUMP | \
BBF_HAS_NEWOBJ | BBF_HAS_NEWARR | BBF_HAS_NULLCHECK | BBF_HAS_MDARRAYREF | BBF_LOOP_HEAD | BBF_MAY_HAVE_BOUNDS_CHECKS,
// Flags a block should not have had before it is split.
BBF_SPLIT_NONEXIST = BBF_LOOP_HEAD | BBF_RETLESS_CALL | BBF_COLD,
// Flags lost by the top block when a block is split.
// Note, this is a conservative guess.
// For example, the top block might or might not have BBF_GC_SAFE_POINT,
// but we assume it does not have BBF_GC_SAFE_POINT any more.
BBF_SPLIT_LOST = BBF_GC_SAFE_POINT | BBF_NEEDS_GCPOLL | BBF_HAS_JMP | BBF_KEEP_BBJ_ALWAYS | BBF_CLONED_FINALLY_END | BBF_RECURSIVE_TAILCALL,
// Flags gained by the bottom block when a block is split.
// Note, this is a conservative guess.
// For example, the bottom block might or might not have BBF_HAS_NULLCHECK, but we assume it has BBF_HAS_NULLCHECK.
// TODO: Should BBF_RUN_RARELY be added to BBF_SPLIT_GAINED ?
BBF_SPLIT_GAINED = BBF_DONT_REMOVE | BBF_HAS_JMP | BBF_BACKWARD_JUMP | BBF_HAS_IDX_LEN | BBF_HAS_MD_IDX_LEN | BBF_PROF_WEIGHT | BBF_HAS_NEWARR | \
BBF_HAS_NEWOBJ | BBF_KEEP_BBJ_ALWAYS | BBF_CLONED_FINALLY_END | BBF_HAS_NULLCHECK | BBF_HAS_HISTOGRAM_PROFILE | BBF_HAS_VALUE_PROFILE | BBF_HAS_MDARRAYREF | BBF_NEEDS_GCPOLL | BBF_MAY_HAVE_BOUNDS_CHECKS,
// Flags that must be propagated to a new block if code is copied from a block to a new block. These are flags that
// limit processing of a block if the code in question doesn't exist. This is conservative; we might not
// have actually copied one of these type of tree nodes, but if we only copy a portion of the block's statements,
// we don't know (unless we actually pay close attention during the copy).
BBF_COPY_PROPAGATE = BBF_HAS_NEWOBJ | BBF_HAS_NEWARR | BBF_HAS_NULLCHECK | BBF_HAS_IDX_LEN | BBF_HAS_MD_IDX_LEN | BBF_HAS_MDARRAYREF | BBF_MAY_HAVE_BOUNDS_CHECKS,
};
FORCEINLINE
constexpr BasicBlockFlags operator ~(BasicBlockFlags a)
{
return (BasicBlockFlags)(~(uint64_t)a);
}
FORCEINLINE
constexpr BasicBlockFlags operator |(BasicBlockFlags a, BasicBlockFlags b)
{
return (BasicBlockFlags)((uint64_t)a | (uint64_t)b);
}
FORCEINLINE
constexpr BasicBlockFlags operator &(BasicBlockFlags a, BasicBlockFlags b)
{
return (BasicBlockFlags)((uint64_t)a & (uint64_t)b);
}
FORCEINLINE
BasicBlockFlags& operator |=(BasicBlockFlags& a, BasicBlockFlags b)
{
return a = (BasicBlockFlags)((uint64_t)a | (uint64_t)b);
}
FORCEINLINE
BasicBlockFlags& operator &=(BasicBlockFlags& a, BasicBlockFlags b)
{
return a = (BasicBlockFlags)((uint64_t)a & (uint64_t)b);
}
enum class BasicBlockVisit
{
Continue,
Abort,
};
// clang-format on
//-------------------------------------------------------------------------
// FlowEdge -- control flow edge
//
// In compiler terminology the control flow between two BasicBlocks
// is typically referred to as an "edge". Most well known are the
// backward branches for loops, which are often called "back-edges".
//
// "struct FlowEdge" is the type that represents our control flow edges.
// This type is a linked list of zero or more "edges".
// (The list of zero edges is represented by NULL.)
// Every BasicBlock has a field called bbPreds of this type. This field
// represents the list of "edges" that flow into this BasicBlock.
// The FlowEdge type only stores the BasicBlock* of the source for the
// control flow edge. The destination block for the control flow edge
// is implied to be the block which contained the bbPreds field.
//
// For a switch branch target there may be multiple "edges" that have
// the same source block (and destination block). We need to count the
// number of these edges so that during optimization we will know when
// we have zero of them. Rather than have extra FlowEdge entries we
// track this via the DupCount property.
//
// When we have Profile weight for the BasicBlocks we can usually compute
// the number of times each edge was executed by examining the adjacent
// BasicBlock weights. As we are doing for BasicBlocks, we call the number
// of times that a control flow edge was executed the "edge weight".
// In order to compute the edge weights we need to use a bounded range
// for every edge weight. These two fields, 'flEdgeWeightMin' and 'flEdgeWeightMax'
// are used to hold a bounded range. Most often these will converge such
// that both values are the same and that value is the exact edge weight.
// Sometimes we are left with a rage of possible values between [Min..Max]
// which represents an inexact edge weight.
//
// The bbPreds list is initially created by Compiler::fgLinkBasicBlocks()
// and is incrementally kept up to date.
//
struct FlowEdge
{
private:
// The next predecessor edge in the list, nullptr for end of list.
FlowEdge* m_nextPredEdge;
// The source of the control flow
BasicBlock* m_sourceBlock;
// The destination of the control flow
BasicBlock* m_destBlock;
// Likelihood that m_sourceBlock transfers control along this edge.
// Values in range [0..1]
weight_t m_likelihood;
// The count of duplicate "edges" (used for switch stmts or degenerate branches)
unsigned m_dupCount;
// Convenience flag for phases that need to track edge visitation
bool m_visited;
// True if likelihood has been set
INDEBUG(bool m_likelihoodSet);
public:
FlowEdge(BasicBlock* sourceBlock, BasicBlock* destBlock, FlowEdge* rest)
: m_nextPredEdge(rest)
, m_sourceBlock(sourceBlock)
, m_destBlock(destBlock)
, m_likelihood(0)
, m_dupCount(0)
, m_visited(false)
#ifdef DEBUG
, m_likelihoodSet(false)
#endif // DEBUG
{
}
FlowEdge* getNextPredEdge() const
{
return m_nextPredEdge;
}
FlowEdge** getNextPredEdgeRef()
{
return &m_nextPredEdge;
}
void setNextPredEdge(FlowEdge* newEdge)
{
m_nextPredEdge = newEdge;
}
BasicBlock* getSourceBlock() const
{
assert(m_sourceBlock != nullptr);
return m_sourceBlock;
}
void setSourceBlock(BasicBlock* newBlock)
{
assert(newBlock != nullptr);
m_sourceBlock = newBlock;
}
BasicBlock* getDestinationBlock() const
{
assert(m_destBlock != nullptr);
return m_destBlock;
}
void setDestinationBlock(BasicBlock* newBlock)
{
assert(newBlock != nullptr);
m_destBlock = newBlock;
}
weight_t getLikelihood() const
{
assert(m_likelihoodSet);
return m_likelihood;
}
void setLikelihood(weight_t likelihood);
void addLikelihood(weight_t addedLikelihod);
void clearLikelihood()
{
m_likelihood = 0.0;
INDEBUG(m_likelihoodSet = false);
}
#ifdef DEBUG
bool hasLikelihood() const
{
return m_likelihoodSet;
}
#endif // DEBUG
weight_t getLikelyWeight() const;
unsigned getDupCount() const
{
return m_dupCount;
}
void incrementDupCount()
{
m_dupCount++;
}
void decrementDupCount()
{
assert(m_dupCount >= 1);
m_dupCount--;
}
bool visited() const
{
return m_visited;
}
void markVisited()
{
assert(!visited());
m_visited = true;
}
void markUnvisited()
{
assert(visited());
m_visited = false;
}
};
//------------------------------------------------------------------------
// BasicBlock: describes a basic block in the flowgraph.
//
// Note that this type derives from LIR::Range in order to make the LIR
// utilities that are polymorphic over basic block and scratch ranges
// faster and simpler.
//
struct BasicBlock : private LIR::Range
{
friend class LIR;
private:
BasicBlock* bbNext; // next BB in ascending PC offset order
BasicBlock* bbPrev;
BBKinds bbKind; // jump (if any) at the end of this block
/* The following union describes the jump target(s) of this block */
union
{
unsigned bbTargetOffs; // PC offset (temporary only)
FlowEdge* bbTargetEdge; // successor edge for block kinds with only one successor (BBJ_ALWAYS, etc)
FlowEdge* bbTrueEdge; // BBJ_COND successor edge when its condition is true (alias for bbTargetEdge)
BBswtDesc* bbSwtTargets; // switch descriptor
BBehfDesc* bbEhfTargets; // BBJ_EHFINALLYRET descriptor
};
// Successor edge of a BBJ_COND block if bbTrueEdge is not taken
FlowEdge* bbFalseEdge;
public:
static BasicBlock* New(Compiler* compiler);
static BasicBlock* New(Compiler* compiler, BBKinds kind);
static BasicBlock* New(Compiler* compiler, BBehfDesc* ehfTargets);
static BasicBlock* New(Compiler* compiler, BBswtDesc* swtTargets);
static BasicBlock* New(Compiler* compiler, BBKinds kind, unsigned targetOffs);
BBKinds GetKind() const
{
return bbKind;
}
void SetKind(BBKinds kind)
{
// If this block's jump kind requires a target, ensure it is already set
assert(!HasTarget() || HasInitializedTarget());
bbKind = kind;
// If new jump kind requires a target, ensure a target is already set
assert(!HasTarget() || HasInitializedTarget());
}
BasicBlock* Prev() const
{
return bbPrev;
}
void SetPrev(BasicBlock* prev)
{
assert(prev != nullptr);
bbPrev = prev;
prev->bbNext = this;
}
void SetPrevToNull()
{
bbPrev = nullptr;
}
BasicBlock* Next() const
{
return bbNext;
}
void SetNext(BasicBlock* next)
{
assert(next != nullptr);
bbNext = next;
next->bbPrev = this;
}
void SetNextToNull()
{
bbNext = nullptr;
}
bool IsFirst() const
{
return (bbPrev == nullptr);
}
bool IsLast() const
{
return (bbNext == nullptr);
}
bool PrevIs(const BasicBlock* block) const
{
return (bbPrev == block);
}
bool NextIs(const BasicBlock* block) const
{
return (bbNext == block);
}
bool IsLastHotBlock(Compiler* compiler) const;
bool IsFirstColdBlock(Compiler* compiler) const;
bool CanRemoveJumpToNext(Compiler* compiler) const;
bool CanRemoveJumpToTarget(BasicBlock* target, Compiler* compiler) const;
unsigned GetTargetOffs() const
{
return bbTargetOffs;
}
bool HasTarget() const
{
// These block types should always have bbTargetEdge set
return KindIs(BBJ_ALWAYS, BBJ_CALLFINALLY, BBJ_CALLFINALLYRET, BBJ_EHCATCHRET, BBJ_EHFILTERRET, BBJ_LEAVE);
}
BasicBlock* GetTarget() const
{
return GetTargetEdge()->getDestinationBlock();
}
FlowEdge* GetTargetEdge() const
{
// Only block kinds that use `bbTargetEdge` can access it, and it must be non-null.
assert(HasInitializedTarget());
assert(bbTargetEdge->getSourceBlock() == this);
assert(bbTargetEdge->getDestinationBlock() != nullptr);
return bbTargetEdge;
}
void SetTargetEdge(FlowEdge* targetEdge)
{
// SetKindAndTarget() nulls target for non-jump kinds,
// so don't use SetTargetEdge() to null bbTargetEdge without updating bbKind.
bbTargetEdge = targetEdge;
assert(HasInitializedTarget());
assert(bbTargetEdge->getSourceBlock() == this);
assert(bbTargetEdge->getDestinationBlock() != nullptr);
// This is the only successor edge for this block, so likelihood should be 1.0
bbTargetEdge->setLikelihood(1.0);
}
BasicBlock* GetTrueTarget() const
{
return GetTrueEdge()->getDestinationBlock();
}
FlowEdge* GetTrueEdge() const
{
assert(KindIs(BBJ_COND));
assert(bbTrueEdge != nullptr);
assert(bbTrueEdge->getSourceBlock() == this);
assert(bbTrueEdge->getDestinationBlock() != nullptr);
return bbTrueEdge;
}
void SetTrueEdge(FlowEdge* trueEdge)
{
assert(KindIs(BBJ_COND));
bbTrueEdge = trueEdge;
assert(bbTrueEdge != nullptr);
assert(bbTrueEdge->getSourceBlock() == this);
assert(bbTrueEdge->getDestinationBlock() != nullptr);
}
bool TrueTargetIs(const BasicBlock* target) const
{
return (GetTrueTarget() == target);
}
bool TrueEdgeIs(const FlowEdge* targetEdge) const
{
return (GetTrueEdge() == targetEdge);
}
BasicBlock* GetFalseTarget() const
{
return GetFalseEdge()->getDestinationBlock();
}
FlowEdge* GetFalseEdge() const
{
assert(KindIs(BBJ_COND));
assert(bbFalseEdge != nullptr);
assert(bbFalseEdge->getSourceBlock() == this);
assert(bbFalseEdge->getDestinationBlock() != nullptr);
return bbFalseEdge;
}
void SetFalseEdge(FlowEdge* falseEdge)
{
assert(KindIs(BBJ_COND));
bbFalseEdge = falseEdge;
assert(bbFalseEdge != nullptr);
assert(bbFalseEdge->getSourceBlock() == this);
assert(bbFalseEdge->getDestinationBlock() != nullptr);
}
bool FalseTargetIs(const BasicBlock* target) const
{
return (GetFalseTarget() == target);
}
bool FalseEdgeIs(const FlowEdge* targetEdge) const
{
return (GetFalseEdge() == targetEdge);
}
void SetCond(FlowEdge* trueEdge, FlowEdge* falseEdge)
{
bbKind = BBJ_COND;
SetTrueEdge(trueEdge);
SetFalseEdge(falseEdge);
}
// In most cases, a block's true and false targets are known by the time SetCond is called.
// To simplify the few cases where the false target isn't available until later,
// overload SetCond to initialize only the true target.
// This simplifies, for example, lowering switch blocks into jump sequences.
void SetCond(FlowEdge* trueEdge)
{
bbKind = BBJ_COND;
SetTrueEdge(trueEdge);
}
// Set both the block kind and target edge.
void SetKindAndTargetEdge(BBKinds kind, FlowEdge* targetEdge)
{
bbKind = kind;
bbTargetEdge = targetEdge;
assert(HasInitializedTarget());
// This is the only successor edge for this block, so likelihood should be 1.0
bbTargetEdge->setLikelihood(1.0);
}
// Set the block kind, and clear bbTargetEdge.
void SetKindAndTargetEdge(BBKinds kind)
{
bbKind = kind;
bbTargetEdge = nullptr;
assert(!HasTarget());
}
bool HasInitializedTarget() const
{
assert(HasTarget());
return (bbTargetEdge != nullptr);
}
bool TargetIs(const BasicBlock* target) const
{
return (GetTarget() == target);
}
bool JumpsToNext() const
{
return (GetTarget() == bbNext);
}
BBswtDesc* GetSwitchTargets() const
{
assert(KindIs(BBJ_SWITCH));
assert(bbSwtTargets != nullptr);
return bbSwtTargets;
}
void SetSwitch(BBswtDesc* swtTarget)
{
assert(swtTarget != nullptr);
bbKind = BBJ_SWITCH;
bbSwtTargets = swtTarget;
}
BBehfDesc* GetEhfTargets() const
{
assert(KindIs(BBJ_EHFINALLYRET));
return bbEhfTargets;
}
void SetEhfTargets(BBehfDesc* ehfTarget)