forked from dotnet/runtime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodegenlinear.cpp
2752 lines (2437 loc) · 101 KB
/
codegenlinear.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX Code Generation Support Methods for Linear Codegen XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif
#include "emit.h"
#include "codegen.h"
//------------------------------------------------------------------------
// genInitializeRegisterState: Initialize the register state contained in 'regSet'.
//
// Assumptions:
// On exit the "rsModifiedRegsMask" (in "regSet") holds all the registers' masks hosting an argument on the function
// and elements of "rsSpillDesc" (in "regSet") are setted to nullptr.
//
// Notes:
// This method is intended to be called only from initializeStructuresBeforeBlockCodeGeneration.
void CodeGen::genInitializeRegisterState()
{
// Initialize the spill tracking logic
regSet.rsSpillBeg();
// If any arguments live in registers, mark those regs as such
unsigned varNum;
LclVarDsc* varDsc;
for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++)
{
// Is this variable a parameter assigned to a register?
if (!varDsc->lvIsParam || !varDsc->lvRegister)
{
continue;
}
// Is the argument live on entry to the method?
if (!VarSetOps::IsMember(compiler, compiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex))
{
continue;
}
if (varDsc->IsAddressExposed())
{
continue;
}
// Mark the register as holding the variable
regNumber reg = varDsc->GetRegNum();
if (genIsValidIntReg(reg))
{
regSet.verifyRegUsed(reg);
}
}
}
//------------------------------------------------------------------------
// genInitialize: Initialize Scopes, registers, gcInfo and current liveness variables structures
// used in the generation of blocks' code before.
//
// Assumptions:
// -The pointer logic in "gcInfo" for pointers on registers and variable is cleaned.
// -"compiler->compCurLife" becomes an empty set
// -"compiler->compCurLife" are set to be a clean set
// -If there is local var info siScopes scope logic in codegen is initialized in "siInit()"
//
// Notes:
// This method is intended to be called when code generation for blocks happens, and before the list of blocks is
// iterated.
void CodeGen::genInitialize()
{
// Initialize the line# tracking logic
if (compiler->opts.compScopeInfo)
{
siInit();
}
initializeVariableLiveKeeper();
genPendingCallLabel = nullptr;
// Initialize the pointer tracking code
gcInfo.gcRegPtrSetInit();
gcInfo.gcVarPtrSetInit();
// Initialize the register set logic
genInitializeRegisterState();
// Make sure a set is allocated for compiler->compCurLife (in the long case), so we can set it to empty without
// allocation at the start of each basic block.
VarSetOps::AssignNoCopy(compiler, compiler->compCurLife, VarSetOps::MakeEmpty(compiler));
// We initialize the stack level before first "BasicBlock" code is generated in case we need to report stack
// variable needs home and so its stack offset.
SetStackLevel(0);
}
//------------------------------------------------------------------------
// genCodeForBBlist: Generate code for all the blocks in a method
//
// Arguments:
// None
//
// Notes:
// This is the main method for linear codegen. It calls genCodeForTreeNode
// to generate the code for each node in each BasicBlock, and handles BasicBlock
// boundaries and branches.
//
void CodeGen::genCodeForBBlist()
{
unsigned savedStkLvl;
#ifdef DEBUG
genInterruptibleUsed = true;
// You have to be careful if you create basic blocks from now on
compiler->fgSafeBasicBlockCreation = false;
#endif // DEBUG
#if defined(DEBUG) && defined(TARGET_X86)
// Check stack pointer on call stress mode is not compatible with fully interruptible GC. REVIEW: why?
//
if (GetInterruptible() && compiler->opts.compStackCheckOnCall)
{
compiler->opts.compStackCheckOnCall = false;
}
#endif // defined(DEBUG) && defined(TARGET_X86)
#if defined(DEBUG) && defined(TARGET_XARCH)
// Check stack pointer on return stress mode is not compatible with fully interruptible GC. REVIEW: why?
// It is also not compatible with any function that makes a tailcall: we aren't smart enough to only
// insert the SP check in the non-tailcall returns.
//
if ((GetInterruptible() || compiler->compTailCallUsed) && compiler->opts.compStackCheckOnRet)
{
compiler->opts.compStackCheckOnRet = false;
}
#endif // defined(DEBUG) && defined(TARGET_XARCH)
genMarkLabelsForCodegen();
/* Initialize structures used in the block list iteration */
genInitialize();
/*-------------------------------------------------------------------------
*
* Walk the basic blocks and generate code for each one
*
*/
BasicBlock* block;
for (block = compiler->fgFirstBB; block != nullptr; block = block->Next())
{
#ifdef DEBUG
if (compiler->verbose)
{
printf("\n=============== Generating ");
block->dspBlockHeader(compiler, true, true);
compiler->fgDispBBLiveness(block);
}
#endif // DEBUG
assert(LIR::AsRange(block).CheckLIR(compiler));
// Figure out which registers hold variables on entry to this block
regSet.ClearMaskVars();
gcInfo.gcRegGCrefSetCur = RBM_NONE;
gcInfo.gcRegByrefSetCur = RBM_NONE;
compiler->m_pLinearScan->recordVarLocationsAtStartOfBB(block);
// Updating variable liveness after last instruction of previous block was emitted
// and before first of the current block is emitted
genUpdateLife(block->bbLiveIn);
// Even if liveness didn't change, we need to update the registers containing GC references.
// genUpdateLife will update the registers live due to liveness changes. But what about registers that didn't
// change? We cleared them out above. Maybe we should just not clear them out, but update the ones that change
// here. That would require handling the changes in recordVarLocationsAtStartOfBB().
regMaskTP newLiveRegSet = RBM_NONE;
regMaskTP newRegGCrefSet = RBM_NONE;
regMaskTP newRegByrefSet = RBM_NONE;
#ifdef DEBUG
VARSET_TP removedGCVars(VarSetOps::MakeEmpty(compiler));
VARSET_TP addedGCVars(VarSetOps::MakeEmpty(compiler));
#endif
VarSetOps::Iter iter(compiler, block->bbLiveIn);
unsigned varIndex = 0;
while (iter.NextElem(&varIndex))
{
LclVarDsc* varDsc = compiler->lvaGetDescByTrackedIndex(varIndex);
if (varDsc->lvIsInReg())
{
newLiveRegSet |= varDsc->lvRegMask();
if (varDsc->lvType == TYP_REF)
{
newRegGCrefSet |= varDsc->lvRegMask();
}
else if (varDsc->lvType == TYP_BYREF)
{
newRegByrefSet |= varDsc->lvRegMask();
}
if (!varDsc->IsAlwaysAliveInMemory())
{
#ifdef DEBUG
if (verbose && VarSetOps::IsMember(compiler, gcInfo.gcVarPtrSetCur, varIndex))
{
VarSetOps::AddElemD(compiler, removedGCVars, varIndex);
}
#endif // DEBUG
VarSetOps::RemoveElemD(compiler, gcInfo.gcVarPtrSetCur, varIndex);
}
}
if ((!varDsc->lvIsInReg() || varDsc->IsAlwaysAliveInMemory()) && compiler->lvaIsGCTracked(varDsc))
{
#ifdef DEBUG
if (verbose && !VarSetOps::IsMember(compiler, gcInfo.gcVarPtrSetCur, varIndex))
{
VarSetOps::AddElemD(compiler, addedGCVars, varIndex);
}
#endif // DEBUG
VarSetOps::AddElemD(compiler, gcInfo.gcVarPtrSetCur, varIndex);
}
}
regSet.SetMaskVars(newLiveRegSet);
#ifdef DEBUG
if (compiler->verbose)
{
if (!VarSetOps::IsEmpty(compiler, addedGCVars))
{
printf("\t\t\t\t\t\t\tAdded GCVars: ");
dumpConvertedVarSet(compiler, addedGCVars);
printf("\n");
}
if (!VarSetOps::IsEmpty(compiler, removedGCVars))
{
printf("\t\t\t\t\t\t\tRemoved GCVars: ");
dumpConvertedVarSet(compiler, removedGCVars);
printf("\n");
}
}
#endif // DEBUG
gcInfo.gcMarkRegSetGCref(newRegGCrefSet DEBUGARG(true));
gcInfo.gcMarkRegSetByref(newRegByrefSet DEBUGARG(true));
/* Blocks with handlerGetsXcptnObj()==true use GT_CATCH_ARG to
represent the exception object (TYP_REF).
We mark REG_EXCEPTION_OBJECT as holding a GC object on entry
to the block, it will be the first thing evaluated
(thanks to GTF_ORDER_SIDEEFF).
*/
if (handlerGetsXcptnObj(block->bbCatchTyp))
{
for (GenTree* node : LIR::AsRange(block))
{
if (node->OperGet() == GT_CATCH_ARG)
{
gcInfo.gcMarkRegSetGCref(RBM_EXCEPTION_OBJECT);
break;
}
}
}
/* Start a new code output block */
genUpdateCurrentFunclet(block);
genLogLabel(block);
// Tell everyone which basic block we're working on
compiler->compCurBB = block;
block->bbEmitCookie = nullptr;
// If this block is a jump target or it requires a label then set 'needLabel' to true,
//
bool needLabel = block->HasFlag(BBF_HAS_LABEL);
if (block->IsFirstColdBlock(compiler))
{
#ifdef DEBUG
if (compiler->verbose)
{
printf("\nThis is the start of the cold region of the method\n");
}
#endif
// We should never split call/finally pairs between hot/cold sections
noway_assert(!block->isBBCallFinallyPairTail());
needLabel = true;
}
// We also want to start a new Instruction group by calling emitAddLabel below,
// when we need accurate bbWeights for this block in the emitter. We force this
// whenever our previous block was a BBJ_COND and it has a different weight than us.
//
// Note: We need to have set compCurBB before calling emitAddLabel
//
if (!block->IsFirst() && block->Prev()->KindIs(BBJ_COND) && (block->bbWeight != block->Prev()->bbWeight))
{
JITDUMP("Adding label due to BB weight difference: BBJ_COND " FMT_BB " with weight " FMT_WT
" different from " FMT_BB " with weight " FMT_WT "\n",
block->Prev()->bbNum, block->Prev()->bbWeight, block->bbNum, block->bbWeight);
needLabel = true;
}
#if FEATURE_LOOP_ALIGN
if (GetEmitter()->emitEndsWithAlignInstr())
{
// Force new label if current IG ends with an align instruction.
needLabel = true;
}
#endif
if (needLabel)
{
// Mark a label and update the current set of live GC refs
block->bbEmitCookie = GetEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur,
gcInfo.gcRegByrefSetCur, block->Prev());
}
if (block->IsFirstColdBlock(compiler))
{
// We require the block that starts the Cold section to have a label
noway_assert(block->bbEmitCookie);
GetEmitter()->emitSetFirstColdIGCookie(block->bbEmitCookie);
}
// Both stacks are always empty on entry to a basic block.
assert(genStackLevel == 0);
genAdjustStackLevel(block);
savedStkLvl = genStackLevel;
// Needed when jitting debug code
siBeginBlock(block);
// BBF_INTERNAL blocks don't correspond to any single IL instruction.
// Add a NoMapping entry unless this is right after the prolog where it
// is unnecessary.
if (compiler->opts.compDbgInfo && block->HasFlag(BBF_INTERNAL) && !block->IsFirst())
{
genIPmappingAdd(IPmappingDscKind::NoMapping, DebugInfo(), true);
}
bool firstMapping = true;
if (compiler->bbIsFuncletBeg(block))
{
genReserveFuncletProlog(block);
}
// Clear compCurStmt and compCurLifeTree.
compiler->compCurStmt = nullptr;
compiler->compCurLifeTree = nullptr;
#ifdef SWIFT_SUPPORT
// Reassemble Swift struct parameters on the local stack frame in the
// init BB right after the prolog. There can be arbitrary amounts of
// codegen related to doing this, so it cannot be done in the prolog.
if (block->IsFirst() && compiler->lvaHasAnySwiftStackParamToReassemble())
{
genHomeSwiftStructStackParameters();
}
#endif
// Emit poisoning into the init BB that comes right after prolog.
// We cannot emit this code in the prolog as it might make the prolog too large.
if (compiler->compShouldPoisonFrame() && block->IsFirst())
{
genPoisonFrame(newLiveRegSet);
}
// Traverse the block in linear order, generating code for each node as we
// as we encounter it.
#ifdef DEBUG
// Set the use-order numbers for each node.
{
int useNum = 0;
for (GenTree* node : LIR::AsRange(block))
{
assert((node->gtDebugFlags & GTF_DEBUG_NODE_CG_CONSUMED) == 0);
node->gtUseNum = -1;
if (node->isContained() || node->IsCopyOrReload())
{
continue;
}
for (GenTree* operand : node->Operands())
{
genNumberOperandUse(operand, useNum);
}
}
}
#endif // DEBUG
bool addRichMappings = JitConfig.RichDebugInfo() != 0;
INDEBUG(addRichMappings |= JitConfig.JitDisasmWithDebugInfo() != 0);
INDEBUG(addRichMappings |= JitConfig.WriteRichDebugInfoFile() != nullptr);
DebugInfo currentDI;
for (GenTree* node : LIR::AsRange(block))
{
// Do we have a new IL offset?
if (node->OperGet() == GT_IL_OFFSET)
{
GenTreeILOffset* ilOffset = node->AsILOffset();
DebugInfo rootDI = ilOffset->gtStmtDI.GetRoot();
if (rootDI.IsValid())
{
genEnsureCodeEmitted(currentDI);
currentDI = rootDI;
genIPmappingAdd(IPmappingDscKind::Normal, currentDI, firstMapping);
firstMapping = false;
}
if (addRichMappings && ilOffset->gtStmtDI.IsValid())
{
genAddRichIPMappingHere(ilOffset->gtStmtDI);
}
#ifdef DEBUG
assert(ilOffset->gtStmtLastILoffs <= compiler->info.compILCodeSize ||
ilOffset->gtStmtLastILoffs == BAD_IL_OFFSET);
if (compiler->opts.dspCode && compiler->opts.dspInstrs && ilOffset->gtStmtLastILoffs != BAD_IL_OFFSET)
{
while (genCurDispOffset <= ilOffset->gtStmtLastILoffs)
{
genCurDispOffset += dumpSingleInstr(compiler->info.compCode, genCurDispOffset, "> ");
}
}
#endif // DEBUG
}
genCodeForTreeNode(node);
if (node->gtHasReg(compiler) && node->IsUnusedValue())
{
genConsumeReg(node);
}
} // end for each node in block
#ifdef DEBUG
// The following set of register spill checks and GC pointer tracking checks used to be
// performed at statement boundaries. Now, with LIR, there are no statements, so they are
// performed at the end of each block.
// TODO: could these checks be performed more frequently? E.g., at each location where
// the register allocator says there are no live non-variable registers. Perhaps this could
// be done by using the map maintained by LSRA (operandToLocationInfoMap) to mark a node
// somehow when, after the execution of that node, there will be no live non-variable registers.
regSet.rsSpillChk();
// Make sure we didn't bungle pointer register tracking
regMaskTP ptrRegs = gcInfo.gcRegGCrefSetCur | gcInfo.gcRegByrefSetCur;
regMaskTP nonVarPtrRegs = ptrRegs & ~regSet.GetMaskVars();
// If this is a return block then we expect some live GC regs. Clear those.
if (compiler->compMethodReturnsRetBufAddr())
{
nonVarPtrRegs &= ~RBM_INTRET;
}
else
{
const ReturnTypeDesc& retTypeDesc = compiler->compRetTypeDesc;
const unsigned regCount = retTypeDesc.GetReturnRegCount();
for (unsigned i = 0; i < regCount; ++i)
{
regNumber reg = retTypeDesc.GetABIReturnReg(i, compiler->info.compCallConv);
nonVarPtrRegs &= ~genRegMask(reg);
}
}
// For a tailcall arbitrary argument registers may be live into the
// prolog. Skip validating those.
if (block->HasFlag(BBF_HAS_JMP))
{
nonVarPtrRegs &= ~fullIntArgRegMask(CorInfoCallConvExtension::Managed);
}
if (nonVarPtrRegs)
{
printf("Regset after " FMT_BB " gcr=", block->bbNum);
printRegMaskInt(gcInfo.gcRegGCrefSetCur & ~regSet.GetMaskVars());
compiler->GetEmitter()->emitDispRegSet(gcInfo.gcRegGCrefSetCur & ~regSet.GetMaskVars());
printf(", byr=");
printRegMaskInt(gcInfo.gcRegByrefSetCur & ~regSet.GetMaskVars());
compiler->GetEmitter()->emitDispRegSet(gcInfo.gcRegByrefSetCur & ~regSet.GetMaskVars());
printf(", regVars=");
printRegMaskInt(regSet.GetMaskVars());
compiler->GetEmitter()->emitDispRegSet(regSet.GetMaskVars());
printf("\n");
}
noway_assert(nonVarPtrRegs == RBM_NONE);
#endif // DEBUG
#if defined(DEBUG)
if (block->IsLast())
{
genEmitterUnitTests();
}
#endif // defined(DEBUG)
// It is possible to reach the end of the block without generating code for the current IL offset.
// For example, if the following IR ends the current block, no code will have been generated for
// offset 21:
//
// ( 0, 0) [000040] ------------ il_offset void IL offset: 21
//
// N001 ( 0, 0) [000039] ------------ nop void
//
// This can lead to problems when debugging the generated code. To prevent these issues, make sure
// we've generated code for the last IL offset we saw in the block.
genEnsureCodeEmitted(currentDI);
/* Is this the last block, and are there any open scopes left ? */
bool isLastBlockProcessed;
if (block->isBBCallFinallyPair())
{
isLastBlockProcessed = block->Next()->IsLast();
}
else
{
isLastBlockProcessed = block->IsLast();
}
if (compiler->opts.compDbgInfo && isLastBlockProcessed)
{
varLiveKeeper->siEndAllVariableLiveRange(compiler->compCurLife);
}
if (compiler->opts.compScopeInfo && (compiler->info.compVarScopesCount > 0))
{
siEndBlock(block);
}
SubtractStackLevel(savedStkLvl);
#ifdef DEBUG
// compCurLife should be equal to the liveOut set, except that we don't keep
// it up to date for vars that are not register candidates
// (it would be nice to have a xor set function)
VARSET_TP mismatchLiveVars(VarSetOps::Diff(compiler, block->bbLiveOut, compiler->compCurLife));
VarSetOps::UnionD(compiler, mismatchLiveVars,
VarSetOps::Diff(compiler, compiler->compCurLife, block->bbLiveOut));
VarSetOps::Iter mismatchLiveVarIter(compiler, mismatchLiveVars);
unsigned mismatchLiveVarIndex = 0;
bool foundMismatchedRegVar = false;
while (mismatchLiveVarIter.NextElem(&mismatchLiveVarIndex))
{
LclVarDsc* varDsc = compiler->lvaGetDescByTrackedIndex(mismatchLiveVarIndex);
if (varDsc->lvIsRegCandidate())
{
if (!foundMismatchedRegVar)
{
JITDUMP("Mismatched live reg vars after " FMT_BB ":", block->bbNum);
foundMismatchedRegVar = true;
}
JITDUMP(" V%02u", compiler->lvaTrackedIndexToLclNum(mismatchLiveVarIndex));
}
}
if (foundMismatchedRegVar)
{
JITDUMP("\n");
assert(!"Found mismatched live reg var(s) after block");
}
#endif
/* Both stacks should always be empty on exit from a basic block */
noway_assert(genStackLevel == 0);
#ifdef TARGET_AMD64
bool emitNopBeforeEHRegion = false;
// On AMD64, we need to generate a NOP after a call that is the last instruction of the block, in several
// situations, to support proper exception handling semantics. This is mostly to ensure that when the stack
// walker computes an instruction pointer for a frame, that instruction pointer is in the correct EH region.
// The document "clr-abi.md" has more details. The situations:
// 1. If the call instruction is in a different EH region as the instruction that follows it.
// 2. If the call immediately precedes an OS epilog. (Note that what the JIT or VM consider an epilog might
// be slightly different from what the OS considers an epilog, and it is the OS-reported epilog that matters
// here.)
// We handle case #1 here, and case #2 in the emitter.
if (GetEmitter()->emitIsLastInsCall())
{
// Ok, the last instruction generated is a call instruction. Do any of the other conditions hold?
// Note: we may be generating a few too many NOPs for the case of call preceding an epilog. Technically,
// if the next block is a BBJ_RETURN, an epilog will be generated, but there may be some instructions
// generated before the OS epilog starts, such as a GS cookie check.
if (block->IsLast() || !BasicBlock::sameEHRegion(block, block->Next()))
{
// We only need the NOP if we're not going to generate any more code as part of the block end.
switch (block->GetKind())
{
case BBJ_ALWAYS:
// We might skip generating the jump via a peephole optimization.
// If that happens, make sure a NOP is emitted as the last instruction in the block.
emitNopBeforeEHRegion = true;
break;
case BBJ_THROW:
case BBJ_CALLFINALLY:
case BBJ_EHCATCHRET:
// We're going to generate more code below anyway, so no need for the NOP.
case BBJ_RETURN:
case BBJ_EHFINALLYRET:
case BBJ_EHFAULTRET:
case BBJ_EHFILTERRET:
// These are the "epilog follows" case, handled in the emitter.
break;
case BBJ_COND:
case BBJ_SWITCH:
// These can't have a call as the last instruction!
default:
noway_assert(!"Unexpected bbKind");
break;
}
}
}
#endif // TARGET_AMD64
#if FEATURE_LOOP_ALIGN
auto SetLoopAlignBackEdge = [=](const BasicBlock* block, const BasicBlock* target) {
// This is the last place where we operate on blocks and after this, we operate
// on IG. Hence, if we know that the destination of "block" is the first block
// of a loop and that loop needs alignment (it has BBF_LOOP_ALIGN), then "block"
// might represent the lexical end of the loop. Propagate that information on the
// IG through "igLoopBackEdge".
//
// During emitter, this information will be used to calculate the loop size.
// Depending on the loop size, the decision of whether to align a loop or not will be taken.
// (Loop size is calculated by walking the instruction groups; see emitter::getLoopSize()).
// If `igLoopBackEdge` is set, then mark the next BasicBlock as a label. This will cause
// the emitter to create a new IG for the next block. Otherwise, if the next block
// did not have a label, additional instructions might be added to the current IG. This
// would make the "back edge" IG larger, possibly causing the size of the loop computed
// by `getLoopSize()` to be larger than actual, which could push the loop size over the
// threshold of loop size that can be aligned.
if (target->isLoopAlign())
{
if (GetEmitter()->emitSetLoopBackEdge(target))
{
if (!block->IsLast())
{
JITDUMP("Mark " FMT_BB " as label: alignment end-of-loop\n", block->Next()->bbNum);
block->Next()->SetFlags(BBF_HAS_LABEL);
}
}
}
};
#endif // FEATURE_LOOP_ALIGN
/* Do we need to generate a jump or return? */
bool removedJmp = false;
switch (block->GetKind())
{
case BBJ_RETURN:
genExitCode(block);
break;
case BBJ_THROW:
// If we have a throw at the end of a function or funclet, we need to emit another instruction
// afterwards to help the OS unwinder determine the correct context during unwind.
// We insert an unexecuted breakpoint instruction in several situations
// following a throw instruction:
// 1. If the throw is the last instruction of the function or funclet. This helps
// the OS unwinder determine the correct context during an unwind from the
// thrown exception.
// 2. If this is this is the last block of the hot section.
// 3. If the subsequent block is a special throw block.
// 4. On AMD64, if the next block is in a different EH region.
if (block->IsLast() || compiler->bbIsFuncletBeg(block->Next()) ||
!BasicBlock::sameEHRegion(block, block->Next()) ||
(!isFramePointerUsed() && compiler->fgIsThrowHlpBlk(block->Next())) ||
block->IsLastHotBlock(compiler))
{
instGen(INS_BREAKPOINT); // This should never get executed
}
// Do likewise for blocks that end in DOES_NOT_RETURN calls
// that were not caught by the above rules. This ensures that
// gc register liveness doesn't change to some random state after call instructions
else
{
GenTree* call = block->lastNode();
if ((call != nullptr) && (call->gtOper == GT_CALL))
{
if (call->AsCall()->IsNoReturn())
{
instGen(INS_BREAKPOINT); // This should never get executed
}
}
}
break;
case BBJ_CALLFINALLY:
block = genCallFinally(block);
break;
case BBJ_EHCATCHRET:
assert(compiler->UsesFunclets());
genEHCatchRet(block);
FALLTHROUGH;
case BBJ_EHFINALLYRET:
case BBJ_EHFAULTRET:
case BBJ_EHFILTERRET:
if (compiler->UsesFunclets())
{
genReserveFuncletEpilog(block);
}
#if defined(FEATURE_EH_WINDOWS_X86)
else
{
genEHFinallyOrFilterRet(block);
}
#endif // FEATURE_EH_WINDOWS_X86
break;
case BBJ_SWITCH:
break;
case BBJ_ALWAYS:
{
#ifdef DEBUG
GenTree* call = block->lastNode();
if ((call != nullptr) && (call->gtOper == GT_CALL))
{
// At this point, BBJ_ALWAYS should never end with a call that doesn't return.
assert(!call->AsCall()->IsNoReturn());
}
#endif // DEBUG
// If this block jumps to the next one, we might be able to skip emitting the jump
if (block->CanRemoveJumpToNext(compiler))
{
#ifdef TARGET_AMD64
if (emitNopBeforeEHRegion)
{
instGen(INS_nop);
}
#endif // TARGET_AMD64
removedJmp = true;
break;
}
#ifdef TARGET_XARCH
// Do not remove a jump between hot and cold regions.
bool isRemovableJmpCandidate = !compiler->fgInDifferentRegions(block, block->GetTarget());
inst_JMP(EJ_jmp, block->GetTarget(), isRemovableJmpCandidate);
#else
inst_JMP(EJ_jmp, block->GetTarget());
#endif // TARGET_XARCH
}
#if FEATURE_LOOP_ALIGN
SetLoopAlignBackEdge(block, block->GetTarget());
#endif // FEATURE_LOOP_ALIGN
break;
case BBJ_COND:
#if FEATURE_LOOP_ALIGN
// Either true or false target of BBJ_COND can induce a loop.
SetLoopAlignBackEdge(block, block->GetTrueTarget());
SetLoopAlignBackEdge(block, block->GetFalseTarget());
#endif // FEATURE_LOOP_ALIGN
break;
default:
noway_assert(!"Unexpected bbKind");
break;
}
#if FEATURE_LOOP_ALIGN
if (block->hasAlign())
{
// If this block has 'align' instruction in the end (identified by BBF_HAS_ALIGN),
// then need to add align instruction in the current "block".
//
// For non-adaptive alignment, add alignment instruction of size depending on the
// compJitAlignLoopBoundary.
// For adaptive alignment, alignment instruction will always be of 15 bytes for xarch
// and 16 bytes for arm64.
assert(ShouldAlignLoops());
assert(!block->isBBCallFinallyPairTail());
assert(!block->KindIs(BBJ_CALLFINALLY));
GetEmitter()->emitLoopAlignment(DEBUG_ARG1(block->KindIs(BBJ_ALWAYS) && !removedJmp));
}
if (!block->IsLast() && block->Next()->isLoopAlign())
{
if (compiler->opts.compJitHideAlignBehindJmp)
{
// The current IG is the one that is just before the IG having loop start.
// Establish a connection of recent align instruction emitted to the loop
// it actually is aligning using 'idaLoopHeadPredIG'.
GetEmitter()->emitConnectAlignInstrWithCurIG();
}
}
#endif // FEATURE_LOOP_ALIGN
#ifdef DEBUG
if (compiler->verbose)
{
varLiveKeeper->dumpBlockVariableLiveRanges(block);
}
compiler->compCurBB = nullptr;
#endif // DEBUG
} //------------------ END-FOR each block of the method -------------------
#if defined(FEATURE_EH_WINDOWS_X86)
// If this is a synchronized method on x86, and we generated all the code without
// generating the "exit monitor" call, then we must have deleted the single return block
// with that call because it was dead code. We still need to report the monitor range
// to the VM in the GC info, so create a label at the very end so we have a marker for
// the monitor end range.
//
// Do this before cleaning the GC refs below; we don't want to create an IG that clears
// the `this` pointer for lvaKeepAliveAndReportThis.
if (!compiler->UsesFunclets() && (compiler->info.compFlags & CORINFO_FLG_SYNCH) &&
(compiler->syncEndEmitCookie == nullptr))
{
JITDUMP("Synchronized method with missing exit monitor call; adding final label\n");
compiler->syncEndEmitCookie =
GetEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, gcInfo.gcRegByrefSetCur);
noway_assert(compiler->syncEndEmitCookie != nullptr);
}
#endif
// There could be variables alive at this point. For example see lvaKeepAliveAndReportThis.
// This call is for cleaning the GC refs
genUpdateLife(VarSetOps::MakeEmpty(compiler));
/* Finalize the spill tracking logic */
regSet.rsSpillEnd();
/* Finalize the temp tracking logic */
regSet.tmpEnd();
#ifdef DEBUG
if (compiler->verbose)
{
printf("\n# ");
printf("compCycleEstimate = %6d, compSizeEstimate = %5d ", compiler->compCycleEstimate,
compiler->compSizeEstimate);
printf("%s\n", compiler->info.compFullName);
}
#endif
}
/*
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX Register Management XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
//------------------------------------------------------------------------
// genSpillVar: Spill a local variable
//
// Arguments:
// tree - the lclVar node for the variable being spilled
//
// Return Value:
// None.
//
// Assumptions:
// The lclVar must be a register candidate (lvIsRegCandidate())
//
void CodeGen::genSpillVar(GenTree* tree)
{
unsigned varNum = tree->AsLclVarCommon()->GetLclNum();
LclVarDsc* varDsc = compiler->lvaGetDesc(varNum);
assert(varDsc->lvIsRegCandidate());
// We don't actually need to spill if it is already living in memory
const bool needsSpill = ((tree->gtFlags & GTF_VAR_DEF) == 0) && varDsc->lvIsInReg();
if (needsSpill)
{
// In order for a lclVar to have been allocated to a register, it must not have been aliasable, and can
// therefore be store-normalized (rather than load-normalized). In fact, not performing store normalization
// can lead to problems on architectures where a lclVar may be allocated to a register that is not
// addressable at the granularity of the lclVar's defined type (e.g. x86).
var_types lclType = varDsc->GetStackSlotHomeType();
emitAttr size = emitTypeSize(lclType);
// If this is a write-thru or a single-def variable, we don't actually spill at a use,
// but we will kill the var in the reg (below).
if (!varDsc->IsAlwaysAliveInMemory())
{
assert(varDsc->GetRegNum() == tree->GetRegNum());
#if defined(FEATURE_SIMD)
if (lclType == TYP_SIMD12)
{
// Store SIMD12 to stack as 12 bytes
GetEmitter()->emitStoreSimd12ToLclOffset(varNum, tree->AsLclVarCommon()->GetLclOffs(),
tree->GetRegNum(), nullptr);
}
else
#endif
{
instruction storeIns = ins_Store(lclType, compiler->isSIMDTypeLocalAligned(varNum));
inst_TT_RV(storeIns, size, tree, tree->GetRegNum());
}
}
// We should only have both GTF_SPILL (i.e. the flag causing this method to be called) and
// GTF_SPILLED on a write-thru/single-def def, for which we should not be calling this method.
assert((tree->gtFlags & GTF_SPILLED) == 0);
// Remove the live var from the register.
genUpdateRegLife(varDsc, /*isBorn*/ false, /*isDying*/ true DEBUGARG(tree));
gcInfo.gcMarkRegSetNpt(varDsc->lvRegMask());
if (VarSetOps::IsMember(compiler, gcInfo.gcTrkStkPtrLcls, varDsc->lvVarIndex))
{
#ifdef DEBUG
if (!VarSetOps::IsMember(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex))
{
JITDUMP("\t\t\t\t\t\t\tVar V%02u becoming live\n", varNum);
}
else
{
JITDUMP("\t\t\t\t\t\t\tVar V%02u continuing live\n", varNum);
}
#endif
VarSetOps::AddElemD(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex);
}
}
tree->gtFlags &= ~GTF_SPILL;
// If this is NOT a write-thru, reset the var location.
if ((tree->gtFlags & GTF_SPILLED) == 0)
{
varDsc->SetRegNum(REG_STK);
if (varTypeIsMultiReg(tree))
{
varDsc->SetOtherReg(REG_STK);
}
}
else
{
// We only have 'GTF_SPILL' and 'GTF_SPILLED' on a def of a write-thru lclVar
// or a single-def var that is to be spilled at its definition.
assert(varDsc->IsAlwaysAliveInMemory() && ((tree->gtFlags & GTF_VAR_DEF) != 0));
}