forked from dotnet/runtime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodegenloongarch64.cpp
7384 lines (6417 loc) · 263 KB
/
codegenloongarch64.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX LOONGARCH64 Code Generator XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif
#ifdef TARGET_LOONGARCH64
#include "emit.h"
#include "codegen.h"
#include "lower.h"
#include "gcinfo.h"
#include "gcinfoencoder.h"
#include "patchpointinfo.h"
/*
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX Prolog / Epilog XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
//------------------------------------------------------------------------
// genInstrWithConstant: we will typically generate one instruction
//
// ins reg1, reg2, imm
//
// However the imm might not fit as a directly encodable immediate,
// when it doesn't fit we generate extra instruction(s) that sets up
// the 'tmpReg' with the proper immediate value.
//
// li tmpReg, imm // li is pseudo instruction here which maybe 2-4 instructions.
// ins reg1, reg2, tmpReg
//
// Arguments:
// ins - instruction
// attr - operation size and GC attribute
// reg1, reg2 - first and second register operands
// imm - immediate value (third operand when it fits)
// tmpReg - temp register to use when the 'imm' doesn't fit. Can be REG_NA
// if caller knows for certain the constant will fit.
// inUnwindRegion - true if we are in a prolog/epilog region with unwind codes.
// Default: false.
//
// Return Value:
// returns true if the immediate was small enough to be encoded inside instruction. If not,
// returns false meaning the immediate was too large and tmpReg was used and modified.
//
bool CodeGen::genInstrWithConstant(instruction ins,
emitAttr attr,
regNumber reg1,
regNumber reg2,
ssize_t imm,
regNumber tmpReg,
bool inUnwindRegion /* = false */)
{
emitAttr size = EA_SIZE(attr);
// reg1 is usually a dest register
// reg2 is always source register
assert(tmpReg != reg2); // tmpReg can not match any source register
#ifdef DEBUG
switch (ins)
{
case INS_addi_d:
case INS_st_b:
case INS_st_h:
case INS_st_w:
case INS_fst_s:
case INS_st_d:
case INS_fst_d:
case INS_ld_b:
case INS_ld_bu:
case INS_ld_h:
case INS_ld_hu:
case INS_ld_w:
case INS_fld_s:
case INS_ld_d:
case INS_fld_d:
break;
default:
assert(!"Unexpected instruction in genInstrWithConstant");
break;
}
#endif
bool immFitsInIns = emitter::isValidSimm12(imm);
if (immFitsInIns)
{
// generate a single instruction that encodes the immediate directly
GetEmitter()->emitIns_R_R_I(ins, attr, reg1, reg2, imm);
}
else
{
// caller can specify REG_NA for tmpReg, when it "knows" that the immediate will always fit
assert(tmpReg != REG_NA);
// generate two or more instructions
// first we load the immediate into tmpReg
assert(!EA_IS_RELOC(size));
GetEmitter()->emitIns_I_la(size, tmpReg, imm);
regSet.verifyRegUsed(tmpReg);
// when we are in an unwind code region
// we record the extra instructions using unwindPadding()
if (inUnwindRegion)
{
compiler->unwindPadding();
}
if (ins == INS_addi_d)
{
GetEmitter()->emitIns_R_R_R(INS_add_d, attr, reg1, reg2, tmpReg);
}
else
{
GetEmitter()->emitIns_R_R_R(INS_add_d, attr, tmpReg, reg2, tmpReg);
GetEmitter()->emitIns_R_R_I(ins, attr, reg1, tmpReg, 0);
}
}
return immFitsInIns;
}
//------------------------------------------------------------------------
// genStackPointerAdjustment: add a specified constant value to the stack pointer in either the prolog
// or the epilog. The unwind codes for the generated instructions are produced. An available temporary
// register is required to be specified, in case the constant is too large to encode in an "daddu"
// instruction (or "dsubu" instruction if we choose to use one), such that we need to load the constant
// into a register first, before using it.
//
// Arguments:
// spDelta - the value to add to SP (can be negative)
// tmpReg - an available temporary register
// pTmpRegIsZero - If we use tmpReg, and pTmpRegIsZero is non-null, we set *pTmpRegIsZero to 'false'.
// Otherwise, we don't touch it.
// reportUnwindData - If true, report the change in unwind data. Otherwise, do not report it.
//
// Return Value:
// None.
void CodeGen::genStackPointerAdjustment(ssize_t spDelta, regNumber tmpReg, bool* pTmpRegIsZero, bool reportUnwindData)
{
// Even though INS_addi_d is specified here, the encoder will choose either
// an INS_add_d or an INS_addi_d and encode the immediate as a positive value
//
bool wasTempRegisterUsedForImm =
!genInstrWithConstant(INS_addi_d, EA_PTRSIZE, REG_SPBASE, REG_SPBASE, spDelta, tmpReg, true);
if (wasTempRegisterUsedForImm)
{
if (pTmpRegIsZero != nullptr)
{
*pTmpRegIsZero = false;
}
}
if (reportUnwindData)
{
// spDelta is negative in the prolog, positive in the epilog,
// but we always tell the unwind codes the positive value.
ssize_t spDeltaAbs = std::abs(spDelta);
unsigned unwindSpDelta = (unsigned)spDeltaAbs;
assert((ssize_t)unwindSpDelta == spDeltaAbs); // make sure that it fits in a unsigned
compiler->unwindAllocStack(unwindSpDelta);
}
}
//------------------------------------------------------------------------
// genSaveCalleeSavedRegistersHelp: Save the callee-saved registers in 'regsToSaveMask' to the stack frame
// in the function or funclet prolog. Registers are saved in register number order from low addresses
// to high addresses. This means that integer registers are saved at lower addresses than floatint-point/SIMD
// registers.
//
// If establishing frame pointer chaining, it must be done after saving the callee-saved registers.
//
// We can only use the instructions that are allowed by the unwind codes. The caller ensures that
// there is enough space on the frame to store these registers, and that the store instructions
// we need to use (SD) are encodable with the stack-pointer immediate offsets we need to use.
//
// The caller can tell us to fold in a stack pointer adjustment, which we will do with the first instruction.
// Note that the stack pointer adjustment must be by a multiple of 16 to preserve the invariant that the
// stack pointer is always 16 byte aligned. If we are saving an odd number of callee-saved
// registers, though, we will have an empty alignment slot somewhere. It turns out we will put
// it below (at a lower address) the callee-saved registers, as that is currently how we
// do frame layout. This means that the first stack offset will be 8 and the stack pointer
// adjustment must be done by a SUB, and not folded in to a pre-indexed store.
//
// Arguments:
// regsToSaveMask - The mask of callee-saved registers to save. If empty, this function does nothing.
// lowestCalleeSavedOffset - The offset from SP that is the beginning of the callee-saved register area.
//
// Notes:
// The save set can not contain FP/RA in which case FP/RA is saved along with the other callee-saved registers.
//
void CodeGen::genSaveCalleeSavedRegistersHelp(regMaskTP regsToSaveMask, int lowestCalleeSavedOffset)
{
if (regsToSaveMask == 0)
{
return;
}
// The FP and RA are not in RBM_CALLEE_SAVED.
assert(!(regsToSaveMask & (~RBM_CALLEE_SAVED)));
assert(lowestCalleeSavedOffset >= 0);
emitter* emit = GetEmitter();
int regNum = FIRST_INT_CALLEE_SAVED;
regMaskTP regsMask = regsToSaveMask & RBM_INT_CALLEE_SAVED;
uint64_t maskSaveRegs = (uint64_t)regsMask.getLow() >> FIRST_INT_CALLEE_SAVED;
do
{
if (maskSaveRegs & 1)
{
emit->emitIns_R_R_I(INS_st_d, EA_8BYTE, (regNumber)regNum, REG_SP, lowestCalleeSavedOffset);
compiler->unwindSaveReg((regNumber)regNum, lowestCalleeSavedOffset);
lowestCalleeSavedOffset += REGSIZE_BYTES;
}
maskSaveRegs >>= 1;
regNum += 1;
} while (maskSaveRegs != 0);
regsMask = regsToSaveMask & RBM_FLT_CALLEE_SAVED;
maskSaveRegs = (uint64_t)regsMask.getLow() >> FIRST_FLT_CALLEE_SAVED;
regNum = FIRST_FLT_CALLEE_SAVED;
do
{
if (maskSaveRegs & 1)
{
emit->emitIns_R_R_I(INS_fst_d, EA_8BYTE, (regNumber)regNum, REG_SP, lowestCalleeSavedOffset);
compiler->unwindSaveReg((regNumber)regNum, lowestCalleeSavedOffset);
lowestCalleeSavedOffset += REGSIZE_BYTES;
}
maskSaveRegs >>= 1;
regNum += 1;
} while (maskSaveRegs != 0);
}
//------------------------------------------------------------------------
// genRestoreCalleeSavedRegistersHelp: Restore the callee-saved registers in 'regsToRestoreMask' from the stack frame
// in the function or funclet epilog. This exactly reverses the actions of genSaveCalleeSavedRegistersHelp().
//
// Arguments:
// regsToRestoreMask - The mask of callee-saved registers to restore. If empty, this function does nothing.
// lowestCalleeSavedOffset - The offset from SP that is the beginning of the callee-saved register area.
//
// Here's an example restore sequence:
// ld.d s8,sp,#xxx
// ld.d s7,sp,#xxx
// ld.d s6,sp,#xxx
// ld.d s5,sp,#xxx
// ld.d s4,sp,#xxx
// ld.d s3,sp,#xxx
// ld.d s2,sp,#xxx
// ld.d s1,sp,#xxx
// ld.d s0,sp,#xxx
//
// Return Value:
// None.
void CodeGen::genRestoreCalleeSavedRegistersHelp(regMaskTP regsToRestoreMask, int lowestCalleeSavedOffset)
{
// The FP and RA are not in RBM_CALLEE_SAVED.
assert(!(regsToRestoreMask & (~RBM_CALLEE_SAVED)));
if (regsToRestoreMask == 0)
{
return;
}
int highestCalleeSavedOffset = (genCountBits(regsToRestoreMask) << 3) + lowestCalleeSavedOffset;
assert((highestCalleeSavedOffset & 7) == 0);
assert(highestCalleeSavedOffset >= 16);
emitter* emit = GetEmitter();
regMaskTP regsMask = regsToRestoreMask & RBM_FLT_CALLEE_SAVED;
int64_t maskSaveRegs = (int64_t)regsMask.getLow() << (63 - LAST_FLT_CALLEE_SAVED);
int regNum = LAST_FLT_CALLEE_SAVED;
do
{
if (maskSaveRegs < 0)
{
highestCalleeSavedOffset -= REGSIZE_BYTES;
emit->emitIns_R_R_I(INS_fld_d, EA_8BYTE, (regNumber)regNum, REG_SP, highestCalleeSavedOffset);
compiler->unwindSaveReg((regNumber)regNum, highestCalleeSavedOffset);
}
maskSaveRegs <<= 1;
regNum -= 1;
} while (maskSaveRegs != 0);
regsMask = regsToRestoreMask & RBM_INT_CALLEE_SAVED;
maskSaveRegs = (int64_t)regsMask.getLow() << (63 - LAST_INT_CALLEE_SAVED);
regNum = LAST_INT_CALLEE_SAVED;
do
{
if (maskSaveRegs < 0)
{
highestCalleeSavedOffset -= REGSIZE_BYTES;
emit->emitIns_R_R_I(INS_ld_d, EA_8BYTE, (regNumber)regNum, REG_SP, highestCalleeSavedOffset);
compiler->unwindSaveReg((regNumber)regNum, highestCalleeSavedOffset);
}
maskSaveRegs <<= 1;
regNum -= 1;
} while (maskSaveRegs != 0);
assert(highestCalleeSavedOffset >= 16); // the callee-saved regs always above ra/fp.
}
// clang-format off
/*****************************************************************************
*
* Generates code for an EH funclet prolog.
*
* Funclets have the following incoming arguments:
*
* catch: a0 = the exception object that was caught (see GT_CATCH_ARG)
* filter: a0 = the exception object to filter (see GT_CATCH_ARG), a1 = CallerSP of the containing function
* finally/fault: none
*
* Funclets set the following registers on exit:
*
* catch: a0 = the address at which execution should resume (see BBJ_EHCATCHRET)
* filter: a0 = non-zero if the handler should handle the exception, zero otherwise (see GT_RETFILT)
* finally/fault: none
*
* The LoongArch64 funclet prolog is the following (Note: #framesz is total funclet frame size,
* including everything; #outsz is outgoing argument space. #framesz must be a multiple of 16):
*
* Frame type liking:
* addi_d sp,sp,-#framesz ; establish the frame, maybe multi-instruction.
* st.d s0,sp,#outsz ; save callee-saved registers, as necessary
* st.d s1,sp,#outsz+8
* st.d ra,sp,#outsz+?
* st.d fp,sp,#outsz+?
*
* The funclet frame layout:
*
* | |
* |-----------------------|
* | incoming arguments |
* +=======================+ <---- Caller's SP
* | Varargs regs space | // Only for varargs main functions; not used for LA64.
* |-----------------------|
* | MonitorAcquired | // 8 bytes; for synchronized methods
* |-----------------------|
* | PSP slot | // 8 bytes (omitted in NativeAOT ABI)
* |-----------------------|
* |Callee saved registers | // multiple of 8 bytes, not including FP/RA
* |-----------------------|
* | Saved FP, RA | // 16 bytes
* |-----------------------|
* ~ alignment padding ~ // To make the whole frame 16 byte aligned
* |-----------------------|
* | Outgoing arg space | // multiple of 8 bytes; if required (i.e., #outsz != 0)
* |-----------------------| <---- Ambient SP
* | | |
* ~ | Stack grows ~
* | | downward |
* V
*
*
* The outgoing argument size, however, can be very large, if we call a function that takes a large number of
* arguments (note that we currently use the same outgoing argument space size in the funclet as for the main
* function, even if the funclet doesn't have any calls, or has a much smaller, or larger, maximum number of
* outgoing arguments for any call).
*
* Note that in all cases, the PSPSym is in exactly the same position with respect to Caller-SP,
* and that location is the same relative to Caller-SP as in the main function where higher than
* the callee-saved registers.
* That is to say, the PSPSym's relative offset to Caller-SP is not depended on the callee-saved registers.
* TODO-LoongArch64: the funclet's callee-saved registers should not shared with main function.
*
* Funclets do not have varargs arguments. However, because the PSPSym must exist at the same offset from Caller-SP as in the main function, we
* must add buffer space for the saved varargs/argument registers here, if the main function did the same.
*
* Note that localloc cannot be used in a funclet.
*
* ; After this header, fill the PSP slot, for use by the VM (it gets reported with the GC info), or by code generation of nested filters.
* ; This is not part of the "OS prolog"; it has no associated unwind data, and is not reversed in the funclet epilog.
*
* if (this is a filter funclet)
* {
* // a1 on entry to a filter funclet is CallerSP of the containing function:
* // either the main function, or the funclet for a handler that this filter is dynamically nested within.
* // Note that a filter can be dynamically nested within a funclet even if it is not statically within
* // a funclet. Consider:
* //
* // try {
* // try {
* // throw new Exception();
* // } catch(Exception) {
* // throw new Exception(); // The exception thrown here ...
* // }
* // } filter { // ... will be processed here, while the "catch" funclet frame is still on the stack
* // } filter-handler {
* // }
* //
* // Because of this, we need a PSP in the main function anytime a filter funclet doesn't know whether the enclosing frame will
* // be a funclet or main function. We won't know any time there is a filter protecting nested EH. To simplify, we just always
* // create a main function PSP for any function with a filter.
*
* ld.d a1,a1, CallerSP_to_PSP_slot_delta ; Load the CallerSP of the main function (stored in the PSP of the dynamically containing funclet or function)
* st.d a1,sp, SP_to_PSP_slot_delta ; store the PSP
* addi.d fp, a1, Function_CallerSP_to_FP_delta ; re-establish the frame pointer
* }
* else
* {
* // This is NOT a filter funclet. The VM re-establishes the frame pointer on entry.
* // TODO-LOONGARCH64-CQ: if VM set a1 to CallerSP on entry, like for filters, we could save an instruction.
*
* addi.d a3,fp,Function_FP_to_CallerSP_delta ; compute the CallerSP, given the frame pointer. a3 is scratch?
* st.d a3,sp,SP_to_PSP_slot_delta ; store the PSP
* }
*
* An example epilog sequence is then:
*
* addi.d sp,sp,#outsz ; if any outgoing argument space
* ... ; restore callee-saved registers
* ld.d s0,sp,#xxx-8
* ld.d s1,sp,#xxx
* ld.d ra,sp,#xxx+?
* ld.d fp,sp,#xxx+?
* addi.d sp,sp,#framesz
* jr ra
*
*/
// clang-format on
void CodeGen::genFuncletProlog(BasicBlock* block)
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFuncletProlog()\n");
}
#endif
assert(block != NULL);
assert(compiler->bbIsFuncletBeg(block));
ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true);
gcInfo.gcResetForBB();
compiler->unwindBegProlog();
bool isFilter = (block->bbCatchTyp == BBCT_FILTER);
int frameSize = genFuncletInfo.fiSpDelta;
assert(frameSize < 0);
regMaskTP maskArgRegsLiveIn;
if (isFilter)
{
maskArgRegsLiveIn = RBM_A0 | RBM_A1;
}
else if ((block->bbCatchTyp == BBCT_FINALLY) || (block->bbCatchTyp == BBCT_FAULT))
{
maskArgRegsLiveIn = RBM_NONE;
}
else
{
maskArgRegsLiveIn = RBM_A0;
}
regMaskTP maskSaveRegs = genFuncletInfo.fiSaveRegs & RBM_CALLEE_SAVED;
int FP_offset = genFuncletInfo.fiSP_to_CalleeSaved_delta;
if ((FP_offset + (genCountBits(maskSaveRegs) << 3)) <= (2040 - 16)) // no FP/RA.
{
genStackPointerAdjustment(frameSize, REG_R21, nullptr, /* reportUnwindData */ true);
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_FP, REG_SPBASE, FP_offset);
compiler->unwindSaveReg(REG_FP, FP_offset);
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_RA, REG_SPBASE, FP_offset + 8);
compiler->unwindSaveReg(REG_RA, FP_offset + 8);
genSaveCalleeSavedRegistersHelp(maskSaveRegs, FP_offset + 16);
}
else
{
assert(frameSize < -2040);
genStackPointerAdjustment(frameSize + (FP_offset & -16), REG_R21, nullptr, true);
frameSize = -(FP_offset & -16);
FP_offset &= 0xf;
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_FP, REG_SPBASE, FP_offset);
compiler->unwindSaveReg(REG_FP, FP_offset);
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_RA, REG_SPBASE, FP_offset + 8);
compiler->unwindSaveReg(REG_RA, FP_offset + 8);
genSaveCalleeSavedRegistersHelp(maskSaveRegs, FP_offset + 16);
genStackPointerAdjustment(frameSize, REG_R21, nullptr, true);
}
// This is the end of the OS-reported prolog for purposes of unwinding
compiler->unwindEndProlog();
// If there is no PSPSym (NativeAOT ABI), we are done. Otherwise, we need to set up the PSPSym in the functlet
// frame.
if (compiler->lvaPSPSym != BAD_VAR_NUM)
{
if (isFilter)
{
// This is the first block of a filter
// Note that register a1 = CallerSP of the containing function
// A1 is overwritten by the first Load (new callerSP)
// A2 is scratch when we have a large constant offset
// Load the CallerSP of the main function (stored in the PSP of the dynamically containing funclet or
// function)
genInstrWithConstant(INS_ld_d, EA_PTRSIZE, REG_A1, REG_A1, genFuncletInfo.fiCallerSP_to_PSP_slot_delta,
REG_A2, false);
regSet.verifyRegUsed(REG_A1);
// Store the PSP value (aka CallerSP)
genInstrWithConstant(INS_st_d, EA_PTRSIZE, REG_A1, REG_SPBASE, genFuncletInfo.fiSP_to_PSP_slot_delta,
REG_A2, false);
// re-establish the frame pointer
genInstrWithConstant(INS_addi_d, EA_PTRSIZE, REG_FPBASE, REG_A1,
genFuncletInfo.fiFunction_CallerSP_to_FP_delta, REG_A2, false);
}
else // This is a non-filter funclet
{
// A3 is scratch, A2 can also become scratch.
// compute the CallerSP, given the frame pointer. a3 is scratch?
genInstrWithConstant(INS_addi_d, EA_PTRSIZE, REG_A3, REG_FPBASE,
-genFuncletInfo.fiFunction_CallerSP_to_FP_delta, REG_A2, false);
regSet.verifyRegUsed(REG_A3);
genInstrWithConstant(INS_st_d, EA_PTRSIZE, REG_A3, REG_SPBASE, genFuncletInfo.fiSP_to_PSP_slot_delta,
REG_A2, false);
}
}
}
/*****************************************************************************
*
* Generates code for an EH funclet epilog.
*/
void CodeGen::genFuncletEpilog()
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFuncletEpilog()\n");
}
#endif
ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true);
compiler->unwindBegEpilog();
int frameSize = genFuncletInfo.fiSpDelta;
assert(frameSize < 0);
regMaskTP maskSaveRegs = genFuncletInfo.fiSaveRegs & RBM_CALLEE_SAVED;
int FP_offset = genFuncletInfo.fiSP_to_CalleeSaved_delta;
if ((FP_offset + (genCountBits(maskSaveRegs) << 3)) > (2040 - 16)) // no FP/RA.
{
assert(frameSize < -2040);
genStackPointerAdjustment(FP_offset & -16, REG_R21, nullptr, /* reportUnwindData */ true);
frameSize += FP_offset & -16;
FP_offset = FP_offset & 0xf;
}
genRestoreCalleeSavedRegistersHelp(maskSaveRegs, FP_offset + 16);
GetEmitter()->emitIns_R_R_I(INS_ld_d, EA_PTRSIZE, REG_RA, REG_SPBASE, FP_offset + 8);
compiler->unwindSaveReg(REG_RA, FP_offset + 8);
GetEmitter()->emitIns_R_R_I(INS_ld_d, EA_PTRSIZE, REG_FP, REG_SPBASE, FP_offset);
compiler->unwindSaveReg(REG_FP, FP_offset);
genStackPointerAdjustment(-frameSize, REG_R21, nullptr, /* reportUnwindData */ true);
GetEmitter()->emitIns_R_R_I(INS_jirl, emitActualTypeSize(TYP_I_IMPL), REG_R0, REG_RA, 0);
compiler->unwindReturn(REG_RA);
compiler->unwindEndEpilog();
}
/*****************************************************************************
*
* Capture the information used to generate the funclet prologs and epilogs.
* Note that all funclet prologs are identical, and all funclet epilogs are
* identical (per type: filters are identical, and non-filters are identical).
* Thus, we compute the data used for these just once.
*
* See genFuncletProlog() for more information about the prolog/epilog sequences.
*/
void CodeGen::genCaptureFuncletPrologEpilogInfo()
{
if (!compiler->ehAnyFunclets())
{
return;
}
assert(isFramePointerUsed());
// The frame size and offsets must be finalized
assert(compiler->lvaDoneFrameLayout == Compiler::FINAL_FRAME_LAYOUT);
regMaskTP rsMaskSaveRegs = regSet.rsMaskCalleeSaved;
assert((rsMaskSaveRegs & RBM_RA) != 0);
assert((rsMaskSaveRegs & RBM_FP) != 0);
// Because a method and funclets must have the same caller-relative PSPSym offset,
// if there is a PSPSym, we have to pad the funclet frame size for OSR.
//
int osrPad = 0;
if (compiler->opts.IsOSR())
{
osrPad -= compiler->info.compPatchpointInfo->TotalFrameSize();
// OSR pad must be already aligned to stack size.
assert((osrPad % STACK_ALIGN) == 0);
}
/* Now save it for future use */
genFuncletInfo.fiFunction_CallerSP_to_FP_delta = genCallerSPtoFPdelta() + osrPad;
int funcletFrameSize = compiler->lvaOutgoingArgSpaceSize;
genFuncletInfo.fiSP_to_CalleeSaved_delta = funcletFrameSize;
funcletFrameSize += genCountBits(rsMaskSaveRegs) * REGSIZE_BYTES;
int delta_PSP = -TARGET_POINTER_SIZE;
if ((compiler->lvaMonAcquired != BAD_VAR_NUM) && !compiler->opts.IsOSR())
{
delta_PSP -= TARGET_POINTER_SIZE;
}
funcletFrameSize = funcletFrameSize - delta_PSP - osrPad;
funcletFrameSize = roundUp((unsigned)funcletFrameSize, STACK_ALIGN);
genFuncletInfo.fiSpDelta = -funcletFrameSize;
genFuncletInfo.fiSaveRegs = rsMaskSaveRegs;
genFuncletInfo.fiSP_to_PSP_slot_delta = funcletFrameSize + delta_PSP + osrPad;
genFuncletInfo.fiCallerSP_to_PSP_slot_delta = osrPad + delta_PSP;
#ifdef DEBUG
if (verbose)
{
printf("\n");
printf("Funclet prolog / epilog info\n");
printf(" Save regs: ");
dspRegMask(genFuncletInfo.fiSaveRegs);
printf("\n");
if (compiler->opts.IsOSR())
{
printf(" OSR Pad: %d\n", osrPad);
}
printf(" Function CallerSP-to-FP delta: %d\n", genFuncletInfo.fiFunction_CallerSP_to_FP_delta);
printf(" SP to CalleeSaved location delta: %d\n", genFuncletInfo.fiSP_to_CalleeSaved_delta);
printf(" SP delta: %d\n", genFuncletInfo.fiSpDelta);
}
assert(genFuncletInfo.fiSP_to_CalleeSaved_delta >= 0);
if (compiler->lvaPSPSym != BAD_VAR_NUM)
{
assert(genFuncletInfo.fiCallerSP_to_PSP_slot_delta ==
compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym)); // same offset used in main function and
// funclet!
}
#endif // DEBUG
}
void CodeGen::genFnEpilog(BasicBlock* block)
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFnEpilog()\n");
}
#endif // DEBUG
ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true);
VarSetOps::Assign(compiler, gcInfo.gcVarPtrSetCur, GetEmitter()->emitInitGCrefVars);
gcInfo.gcRegGCrefSetCur = GetEmitter()->emitInitGCrefRegs;
gcInfo.gcRegByrefSetCur = GetEmitter()->emitInitByrefRegs;
#ifdef DEBUG
if (compiler->opts.dspCode)
{
printf("\n__epilog:\n");
}
if (verbose)
{
printf("gcVarPtrSetCur=%s ", VarSetOps::ToString(compiler, gcInfo.gcVarPtrSetCur));
dumpConvertedVarSet(compiler, gcInfo.gcVarPtrSetCur);
printf(", gcRegGCrefSetCur=");
printRegMaskInt(gcInfo.gcRegGCrefSetCur);
GetEmitter()->emitDispRegSet(gcInfo.gcRegGCrefSetCur);
printf(", gcRegByrefSetCur=");
printRegMaskInt(gcInfo.gcRegByrefSetCur);
GetEmitter()->emitDispRegSet(gcInfo.gcRegByrefSetCur);
printf("\n");
}
#endif // DEBUG
bool jmpEpilog = block->HasFlag(BBF_HAS_JMP);
GenTree* lastNode = block->lastNode();
// Method handle and address info used in case of jump epilog
CORINFO_METHOD_HANDLE methHnd = nullptr;
CORINFO_CONST_LOOKUP addrInfo;
addrInfo.addr = nullptr;
addrInfo.accessType = IAT_VALUE;
if (jmpEpilog && (lastNode->gtOper == GT_JMP))
{
methHnd = (CORINFO_METHOD_HANDLE)lastNode->AsVal()->gtVal1;
compiler->info.compCompHnd->getFunctionEntryPoint(methHnd, &addrInfo);
}
compiler->unwindBegEpilog();
if (jmpEpilog)
{
SetHasTailCalls(true);
noway_assert(block->KindIs(BBJ_RETURN));
noway_assert(block->GetFirstLIRNode() != nullptr);
/* figure out what jump we have */
GenTree* jmpNode = lastNode;
#if !FEATURE_FASTTAILCALL
noway_assert(jmpNode->gtOper == GT_JMP);
#else // FEATURE_FASTTAILCALL
// armarch
// If jmpNode is GT_JMP then gtNext must be null.
// If jmpNode is a fast tail call, gtNext need not be null since it could have embedded stmts.
noway_assert((jmpNode->gtOper != GT_JMP) || (jmpNode->gtNext == nullptr));
// Could either be a "jmp method" or "fast tail call" implemented as epilog+jmp
noway_assert((jmpNode->gtOper == GT_JMP) ||
((jmpNode->gtOper == GT_CALL) && jmpNode->AsCall()->IsFastTailCall()));
// The next block is associated with this "if" stmt
if (jmpNode->gtOper == GT_JMP)
#endif // FEATURE_FASTTAILCALL
{
// Simply emit a jump to the methodHnd. This is similar to a call so we can use
// the same descriptor with some minor adjustments.
assert(methHnd != nullptr);
assert(addrInfo.addr != nullptr);
emitter::EmitCallType callType;
void* addr;
regNumber indCallReg;
switch (addrInfo.accessType)
{
case IAT_VALUE:
// TODO-LOONGARCH64-CQ: using B/BL for optimization.
case IAT_PVALUE:
// Load the address into a register, load indirect and call through a register
// We have to use REG_INDIRECT_CALL_TARGET_REG since we assume the argument registers are in use
callType = emitter::EC_INDIR_R;
indCallReg = REG_INDIRECT_CALL_TARGET_REG;
addr = NULL;
instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, indCallReg, (ssize_t)addrInfo.addr);
if (addrInfo.accessType == IAT_PVALUE)
{
GetEmitter()->emitIns_R_R_I(INS_ld_d, EA_PTRSIZE, indCallReg, indCallReg, 0);
regSet.verifyRegUsed(indCallReg);
}
break;
case IAT_RELPVALUE:
{
// Load the address into a register, load relative indirect and call through a register
// We have to use R12 since we assume the argument registers are in use
// LR is used as helper register right before it is restored from stack, thus,
// all relative address calculations are performed before LR is restored.
callType = emitter::EC_INDIR_R;
indCallReg = REG_T2;
addr = NULL;
regSet.verifyRegUsed(indCallReg);
break;
}
case IAT_PPVALUE:
default:
NO_WAY("Unsupported JMP indirection");
}
/* Simply emit a jump to the methodHnd. This is similar to a call so we can use
* the same descriptor with some minor adjustments.
*/
genPopCalleeSavedRegisters(true);
// clang-format off
GetEmitter()->emitIns_Call(callType,
methHnd,
INDEBUG_LDISASM_COMMA(nullptr)
addr,
0, // argSize
EA_UNKNOWN // retSize
MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(EA_UNKNOWN), // secondRetSize
gcInfo.gcVarPtrSetCur,
gcInfo.gcRegGCrefSetCur,
gcInfo.gcRegByrefSetCur,
DebugInfo(),
indCallReg, // ireg
REG_NA, // xreg
0, // xmul
0, // disp
true); // isJump
// clang-format on
}
#if FEATURE_FASTTAILCALL
else
{
genPopCalleeSavedRegisters(true);
genCallInstruction(jmpNode->AsCall());
}
#endif // FEATURE_FASTTAILCALL
}
else
{
genPopCalleeSavedRegisters(false);
GetEmitter()->emitIns_R_R_I(INS_jirl, EA_PTRSIZE, REG_R0, REG_RA, 0);
compiler->unwindReturn(REG_RA);
}
compiler->unwindEndEpilog();
}
void CodeGen::genSetPSPSym(regNumber initReg, bool* pInitRegZeroed)
{
assert(compiler->compGeneratingProlog);
if (compiler->lvaPSPSym == BAD_VAR_NUM)
{
return;
}
noway_assert(isFramePointerUsed()); // We need an explicit frame pointer
int SPtoCallerSPdelta = -genCallerSPtoInitialSPdelta();
if (compiler->opts.IsOSR())
{
SPtoCallerSPdelta += compiler->info.compPatchpointInfo->TotalFrameSize();
}
// We will just use the initReg since it is an available register
// and we are probably done using it anyway...
regNumber regTmp = initReg;
*pInitRegZeroed = false;
genInstrWithConstant(INS_addi_d, EA_PTRSIZE, regTmp, REG_SPBASE, SPtoCallerSPdelta, regTmp, false);
GetEmitter()->emitIns_S_R(INS_st_d, EA_PTRSIZE, regTmp, compiler->lvaPSPSym, 0);
}
//-----------------------------------------------------------------------------
// genZeroInitFrameUsingBlockInit: architecture-specific helper for genZeroInitFrame in the case
// `genUseBlockInit` is set.
//
// Arguments:
// untrLclHi - (Untracked locals High-Offset) The upper bound offset at which the zero init
// code will end initializing memory (not inclusive).
// untrLclLo - (Untracked locals Low-Offset) The lower bound at which the zero init code will
// start zero initializing memory.
// initReg - A scratch register (that gets set to zero on some platforms).
// pInitRegZeroed - OUT parameter. *pInitRegZeroed is set to 'true' if this method sets initReg register to zero,
// 'false' if initReg was set to a non-zero value, and left unchanged if initReg was not touched.
//
void CodeGen::genZeroInitFrameUsingBlockInit(int untrLclHi, int untrLclLo, regNumber initReg, bool* pInitRegZeroed)
{
regNumber rAddr;
regNumber rCnt = REG_NA; // Invalid
regMaskTP regMask;
regMaskTP availMask = regSet.rsGetModifiedRegsMask() | RBM_INT_CALLEE_TRASH; // Set of available registers
// see: src/jit/registerloongarch64.h
availMask &= ~intRegState.rsCalleeRegArgMaskLiveIn; // Remove all of the incoming argument registers as they are
// currently live
availMask &= ~genRegMask(initReg); // Remove the pre-calculated initReg as we will zero it and maybe use it for
// a large constant.
rAddr = initReg;
*pInitRegZeroed = false;
// rAddr is not a live incoming argument reg
assert((genRegMask(rAddr) & intRegState.rsCalleeRegArgMaskLiveIn) == 0);
assert(untrLclLo % 4 == 0);
if (emitter::isValidSimm12(untrLclLo))
{
GetEmitter()->emitIns_R_R_I(INS_addi_d, EA_PTRSIZE, rAddr, genFramePointerReg(), untrLclLo);
}
else
{
// Load immediate into the InitReg register
instGen_Set_Reg_To_Imm(EA_PTRSIZE, initReg, (ssize_t)untrLclLo);
GetEmitter()->emitIns_R_R_R(INS_add_d, EA_PTRSIZE, rAddr, genFramePointerReg(), initReg);
*pInitRegZeroed = false;
}
bool useLoop = false;
unsigned uCntBytes = untrLclHi - untrLclLo;
assert((uCntBytes % sizeof(int)) == 0); // The smallest stack slot is always 4 bytes.
unsigned int padding = untrLclLo & 0x7;
if (padding)
{
assert(padding == 4);
GetEmitter()->emitIns_R_R_I(INS_st_w, EA_4BYTE, REG_R0, rAddr, 0);
uCntBytes -= 4;
}
unsigned uCntSlots = uCntBytes / REGSIZE_BYTES; // How many register sized stack slots we're going to use.
// When uCntSlots is 9 or less, we will emit a sequence of sd instructions inline.
// When it is 10 or greater, we will emit a loop containing a sd instruction.
// In both of these cases the sd instruction will write two zeros to memory
// and we will use a single str instruction at the end whenever we have an odd count.
if (uCntSlots >= 10)
useLoop = true;
if (useLoop)
{
// We pick the next lowest register number for rCnt
noway_assert(availMask != RBM_NONE);
regMask = genFindLowestBit(availMask);
rCnt = genRegNumFromMask(regMask);
availMask &= ~regMask;
noway_assert(uCntSlots >= 2);
assert((genRegMask(rCnt) & intRegState.rsCalleeRegArgMaskLiveIn) == 0); // rCnt is not a live incoming
// argument reg
instGen_Set_Reg_To_Imm(EA_PTRSIZE, rCnt, (ssize_t)uCntSlots / 2);
// TODO-LOONGARCH64: maybe optimize further
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_R0, rAddr, 8 + padding);
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_R0, rAddr, 0 + padding);
GetEmitter()->emitIns_R_R_I(INS_addi_d, EA_PTRSIZE, rCnt, rCnt, -1);
// bne rCnt, zero, -4 * 4
ssize_t imm = -16;
GetEmitter()->emitIns_R_R_I(INS_addi_d, EA_PTRSIZE, rAddr, rAddr, 2 * REGSIZE_BYTES);
GetEmitter()->emitIns_R_R_I(INS_bne, EA_PTRSIZE, rCnt, REG_R0, imm);
uCntBytes %= REGSIZE_BYTES * 2;
}
else
{
while (uCntBytes >= REGSIZE_BYTES * 2)
{
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_R0, rAddr, 8 + padding);
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_R0, rAddr, 0 + padding);
GetEmitter()->emitIns_R_R_I(INS_addi_d, EA_PTRSIZE, rAddr, rAddr, 2 * REGSIZE_BYTES + padding);
uCntBytes -= REGSIZE_BYTES * 2;
padding = 0;
}
}
if (uCntBytes >= REGSIZE_BYTES) // check and zero the last register-sized stack slot (odd number)
{
if ((uCntBytes - REGSIZE_BYTES) == 0)
{
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_R0, rAddr, padding);
}
else
{
GetEmitter()->emitIns_R_R_I(INS_st_d, EA_PTRSIZE, REG_R0, rAddr, padding);
GetEmitter()->emitIns_R_R_I(INS_addi_d, EA_PTRSIZE, rAddr, rAddr, REGSIZE_BYTES);
}