-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunction.py
142 lines (121 loc) · 4.99 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import skimage
from skimage import io, measure
import random
import scipy.io as sio
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from preclassify import del2, srad, dicomp, FCM, hcluster
import torch
import torchvision
from torchvision import transforms
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import cv2
import base64
from collections import Counter
def image_padding(data,r):
if len(data.shape)==3:
data_new=np.lib.pad(data,((r,r),(r,r),(0,0)),'constant',constant_values=0)
return data_new
if len(data.shape)==2:
data_new=np.lib.pad(data,r,'constant',constant_values=0)
return data_new
def createTestingCubes(X, patch_size):
# 给 X 做 padding
margin = int((patch_size - 1) / 2)
zeroPaddedX = image_padding(X, margin)
patchesData = np.zeros( (X.shape[0]*X.shape[1], patch_size, patch_size, X.shape[2]) )
patchIndex = 0
for r in range(margin, zeroPaddedX.shape[0] - margin):
for c in range(margin, zeroPaddedX.shape[1] - margin):
patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]
patchesData[patchIndex, :, :, :] = patch
patchIndex = patchIndex + 1
return patchesData
def postprocess(res):
res_new = res
res = measure.label(res, connectivity=2)
num = res.max()
for i in range(1, num+1):
idy, idx = np.where(res==i)
if len(idy) <= 20:
res_new[idy, idx] = 0
return res_new
class MRC(nn.Module):
def __init__(self, inchannel):
super(MRC, self).__init__()
self.conv1 = nn.Conv2d(inchannel, 15, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(15)
self.conv2_1 = nn.Conv2d(5, 5, kernel_size=3, stride=1, padding=1, bias=True)
self.bn2_1 = nn.BatchNorm2d(5)
self.conv2_2 = nn.Conv2d(5, 5, kernel_size=3, stride=1, padding=1, bias=True)
self.bn2_2 = nn.BatchNorm2d(5)
self.conv2_3 = nn.Conv2d(5, 5, kernel_size=3, stride=1, padding=1, bias=True)
self.bn2_3 = nn.BatchNorm2d(5)
def forward(self, x):
ori_out = F.relu(self.bn1(self.conv1(x)))
shape=(x.shape[0], 5, 7, 7)
all_zero3_3=torch.zeros(size=shape).cuda()
all_zero1_3=torch.zeros(size=(x.shape[0], 5, 3, 7)).cuda()
all_zero3_1=torch.zeros(size=(x.shape[0], 5, 7, 3)).cuda()
all_zero3_3[:,:,:,:]=ori_out[:,0:5,:,:]
all_zero1_3[:,:,:,:]=ori_out[:,5:10,2:5,:]
all_zero3_1[:,:,:,:]=ori_out[:,10:15,:,2:5]
square=F.relu(self.bn2_1(self.conv2_1(all_zero3_3)))
horizontal=F.relu(self.bn2_2(self.conv2_2(all_zero1_3)))
vertical=F.relu(self.bn2_3(self.conv2_3(all_zero3_1)))
horizontal_final=torch.zeros(size=(x.shape[0], 5, 7, 7)).cuda()
vertical_final=torch.zeros(size=(x.shape[0], 5, 7, 7)).cuda()
horizontal_final[:,:,2:5,:]=horizontal[:,:,:,:]
vertical_final[:,:,:,2:5]=vertical[:,:,:,:]
glo = square + horizontal_final + vertical_final
#glo= F.relu(self.bn3(self.conv3(glo)))
return glo
def DCT(x):
out=F.interpolate(x, size=(8,8), mode='bilinear', align_corners=True)
#print(out.shape)
#dct_out_1 =torch.Tensor([cv2.dct(x[i,0,:,:].detach().cpu().numpy()) \
# for i in range(x.shape[0])])
dct_out_1 =torch.Tensor([cv2.dct(np.float32(out[i,0,:,:].detach().cpu().numpy())) \
for i in range(x.shape[0])])
dct_out_2 =torch.Tensor([cv2.dct(np.float32(out[i,1,:,:].detach().cpu().numpy())) \
for i in range(x.shape[0])])
dct_out_3 =torch.Tensor([cv2.dct(np.float32(out[i,2,:,:].detach().cpu().numpy())) \
for i in range(x.shape[0])])
dct_out=torch.zeros(size=(x.shape[0],3, 8, 8))
dct_out[:,0,:,:]=dct_out_1
dct_out[:,1,:,:]=dct_out_2
dct_out[:,2,:,:]=dct_out_3
dct_out=dct_out.cuda()#放回cuda
out=dct_out.view(x.shape[0], 3, 64)
#out=torch.cat((out,out),2)
out=F.glu(out,dim=-1)
dct_out=out.view(x.shape[0], 1, 96)
return dct_out
############################################################################################################################################
class DDNet(nn.Module):
def __init__(self):
super(DDNet, self).__init__()
self.mrc1=MRC(3)
self.mrc2=MRC(5)
self.mrc3=MRC(5)
self.mrc4=MRC(5)
self.linear1=nn.Linear(341, 10)
self.linear2=nn.Linear(10, 2)
def forward(self, x):
m_1=self.mrc1(x)
m_2=self.mrc2(m_1)
m_3=self.mrc3(m_2)
m_4=self.mrc4(m_3)
#glo= F.relu(self.bn(self.conv(m_4)))
glo=m_4.view(x.shape[0], 1, 245)
dct_out=DCT(x)
out=torch.cat((glo,dct_out),2)
out = out.view(out.size(0), -1)
#print(out.shape)
out_1 = self.linear1(out)
out = self.linear2(out_1)
return out