-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreclassify.py
157 lines (140 loc) · 5.39 KB
/
preclassify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
from scipy import signal
from scipy.linalg import norm
from scipy.spatial.distance import cdist
def del2(im):
[ylen, xlen] = im.shape
im_new = np.zeros([ylen, xlen], dtype=np.float32)
for j in range(1, ylen-1):
for i in range(1, xlen-1):
im_new[j,i] = (im[j-1,i]+im[j+1,i]+im[j,i-1]+im[j,i+1])/4-im[j,i]
return im_new
def srad(im, delta):
q0 = 1
for n in range(1, 6):
[ylen, xlen] = im.shape
X = np.zeros([ylen+2, xlen+2], dtype=np.float32)
X[1:ylen+1, 1:xlen+1] = im
# padding
X[0, 1:xlen+1] = im[0, :]
X[ylen+1, 1:xlen+1] = im[ylen-1, :]
X[:, 0] = X[:, 1]
X[:, xlen+1] = X[:, xlen]
q0 = q0*np.exp(-delta)
gRx = signal.convolve2d(X, [[0,0,0],[0,1,-1],[0,0,0]], mode='same', boundary='symm')
gRy = signal.convolve2d(X, [[0,-1,0],[0,1,0],[0,0,0]], mode='same', boundary='symm')
gLx = signal.convolve2d(X, [[0,0,0],[1,-1,0],[0,0,0]], mode='same', boundary='symm')
gLy = signal.convolve2d(X, [[0,0,0],[0,-1,0],[0,1,0]], mode='same', boundary='symm')
q1 = np.sqrt(gRx*gRx+gRy*gRy+gLx*gLx+gLy*gLy)/(X+0.0001)
q2 = 4*del2(X)/(X+0.0001)
q = np.sqrt((1/2*(q1*q1)-1/16*(q2*q2))/((1+1/4*q2)*(1+1/4*q2)+0.01))
c = 1/(1+((q*q-q0*q0)/(q0*q0*(1+q0*q0))))
d = signal.convolve2d(c, [[0,0,0],[0,0,-1],[0,0,0]], mode='same', boundary='symm')* \
signal.convolve2d(X, [[0,0,0],[0,1,-1],[0,0,0]], mode='same', boundary='symm')+ \
signal.convolve2d(c, [[0,0,0],[0,-1,0],[0,0,0]], mode='same', boundary='symm')* \
signal.convolve2d(X, [[0,0,0],[-1,1,0],[0,0,0]], mode='same', boundary='symm')+ \
signal.convolve2d(c, [[0,-1,0],[0,0,0],[0,0,0]], mode='same', boundary='symm')* \
signal.convolve2d(X, [[0,-1,0],[0,1,0],[0,0,0]], mode='same', boundary='symm')+ \
signal.convolve2d(c, [[0,0,0],[0,-1,0],[0,0,0]], mode='same', boundary='symm')* \
signal.convolve2d(X, [[0,0,0],[0,1,0],[0,-1,0]], mode='same', boundary='symm')
X = X+delta/4*d
im = X[1:ylen+1, 1:xlen+1]
return im
def dicomp(im1, im2):
im1 = srad(im1, 0.15)
im2 = srad(im2, 0.15)
im_di = abs(np.log((im1+1)/(im2+1)))
im_di = srad(im_di, 0.15)
return im_di
# hiearchical FCM clustering
# in the preclassification map,
# pixels with high probability to be unchanged are labeled 1
# pixels with high probability to be changed are labeled 2
# pixels with uncertainty are labeled 1.5
def hcluster(pix_vec, im_di):
print('... ... 1st round clustering ... ...')
fcm = FCM(n_clusters=2)
fcm.fit(pix_vec)
fcm_lab = fcm.u.argmax(axis=1)
# 变化类像素数目的上下界
if sum(fcm_lab==0)<sum(fcm_lab==1):
ttr = round(sum(fcm_lab==0)*1.25)
ttl = round(sum(fcm_lab==0)/1.10)
else:
ttr = round(sum(fcm_lab==1)*1.25)
ttl = round(sum(fcm_lab==1)/1.10)
print('... ... 2nd round clustering ... ...')
fcm = FCM(n_clusters=5)
fcm.fit(pix_vec)
fcm_lab = fcm.u.argmax(axis=1)
ylen, xlen = im_di.shape
idx = []
idx_tmp = []
idxmean = []
res_lab = np.zeros(ylen*xlen, dtype=np.float32)
for i in range(0, 5):
idx_tmp.append(np.argwhere(fcm_lab==i))
idxmean.append(im_di.reshape(ylen*xlen, 1)[idx_tmp[i]].mean())
idx_sort = np.argsort(idxmean)
for i in range(0, 5):
idx.append(idx_tmp[idx_sort[i]])
c = len(idx[4])
res_lab[idx[4]] = 2
flag_mid = 0
for i in range(1, 5):
c = c+len(idx[4-i])
if c < ttl:
res_lab[idx[4-i]] = 2
elif c >= ttl and c < ttr:
res_lab[idx[4-i]] = 1.5
flag_mid = 1
elif flag_mid == 0:
res_lab[idx[4-i]] = 1.5
flag_mid = 1
else:
res_lab[idx[4-i]] = 1
res_lab = res_lab.reshape(ylen, xlen)
return res_lab
class FCM:
def __init__(self, n_clusters=10, max_iter=150, m=2, error=1e-5, random_state=42):
self.u, self.centers = None, None
self.n_clusters = n_clusters
self.max_iter = max_iter
self.m = m
self.error = error
self.random_state = random_state
def fit(self, X):
N = X.shape[0]
C = self.n_clusters
centers = []
r = np.random.RandomState(self.random_state)
u = r.rand(N,C)
u = u / np.tile(u.sum(axis=1)[np.newaxis].T,C)
iteration = 0
while iteration < self.max_iter:
u2 = u.copy()
centers = self.next_centers(X, u)
u = self.next_u(X, centers)
iteration += 1
# Stopping rule
if norm(u - u2) < self.error:
break
self.u = u
self.centers = centers
return self
def next_centers(self, X, u):
um = u ** self.m
return (X.T @ um / np.sum(um, axis=0)).T
def next_u(self, X, centers):
return self._predict(X, centers)
def _predict(self, X, centers):
power = float(2 / (self.m - 1))
temp = cdist(X, centers) ** power
denominator_ = temp.reshape((X.shape[0], 1, -1)).repeat(temp.shape[-1], axis=1)
denominator_ = temp[:, :, np.newaxis] / denominator_
return 1 / denominator_.sum(2)
def predict(self, X):
if len(X.shape) == 1:
X = np.expand_dims(X, axis=0)
u = self._predict(X, self.centers)
return np.argmax(u, axis=-1)