Skip to content

Commit e679fbb

Browse files
committed
doc: update README
1 parent f0b6741 commit e679fbb

File tree

1 file changed

+22
-26
lines changed

1 file changed

+22
-26
lines changed

README.md

Lines changed: 22 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -6,21 +6,18 @@
66

77
**An industrialized ML pipeline** that transforms a ML model into a scalable, tested, and containerized microservice.
88

9-
---
10-
119
## 📑 Table of Contents
12-
- [⚡ Quick Start](#⚡-quick-start-30-seconds)
13-
- [🎯 Project Purpose](#🎯-project-purpose)
14-
- [📁 Project Structure](#📁-project-structure)
15-
- [🛠️ Technical Documentation](#🛠️-technical-documentation)
10+
- [⚡ Quick Start](#quick-start-30-seconds)
11+
- [🎯 Project Purpose](#project-purpose)
12+
- [📁 Project Structure](#project-structure)
13+
- [🛠️ Technical Documentation](#technical-documentation)
1614
- [Setup](#setup)
1715
- [Running Tests](#running-tests)
1816
- [Training & Execution](#training-the-model)
19-
- [🔄 CI/CD & Quality Control](#🔄-cicd--quality-control)
20-
- [🚀 Future & Tech Stack](#🚀-future--tech-stack)
17+
- [🔄 CI/CD & Quality Control](#cicd--quality-control)
18+
- [🚀 Future & Tech Stack](#future--tech-stack)
2119

22-
---
23-
## ⚡ Quick Start (30 seconds)
20+
## Quick Start (30 seconds)
2421

2522
If you have Docker installed, you can spin up the entire ecosystem with a single command:
2623

@@ -31,7 +28,7 @@ docker compose -f config/docker-compose.yml up --build
3128
* **API:** `http://localhost:5000`
3229
* **UI:** `http://localhost:8501`
3330

34-
## 🎯 Project Purpose
31+
## Project Purpose
3532

3633
This project demonstrates **production-ready MLOps practices** rather than focusing solely on achieving state-of-the-art model performance. The Wisconsin Breast Cancer dataset is used as a **proof-of-concept** to validate the MLOps infrastructure.
3734

@@ -49,7 +46,7 @@ The goal is to showcase best practices in:
4946
5047
This project solves this through container immutability and environment parity.
5148

52-
## 📁 Project Structure
49+
## Project Structure
5350

5451
```text
5552
production-ready-mlops-workflow/
@@ -67,7 +64,7 @@ production-ready-mlops-workflow/
6764
└── pyproject.toml # 📦 Dependency management (uv)
6865
```
6966

70-
## 🛠️ Technical Documentation
67+
## Technical Documentation
7168

7269
### Setup
7370

@@ -225,7 +222,7 @@ This will:
225222
docker compose -f config/docker-compose.yml down
226223
```
227224

228-
## 🔄 CI/CD & Quality Control
225+
## CI/CD & Quality Control
229226

230227
The project implements a continuous integration pipeline that acts as a quality filter (**Quality Gates**):
231228

@@ -254,7 +251,7 @@ The workflow defined in `.github/workflows/main.yml` includes:
254251

255252
This ensures that only tested and validated code reaches production.
256253

257-
## 🚀 Future & Tech Stack
254+
## Future & Tech Stack
258255

259256
<details>
260257
<summary><b>🔮 Future Improvements</b></summary>
@@ -270,17 +267,16 @@ Potential enhancements to further strengthen the MLOps workflow:
270267
<details>
271268
<summary><b>📚 Technologies Used</b></summary>
272269

273-
- **ML Framework**: scikit-learn
274-
- **API Framework**: Flask
275-
- **UI Framework**: Streamlit
276-
- **Validation**: Pydantic
277-
- **Testing**: pytest, pytest-mock
278-
- **Containerization**: Docker, Docker Compose
279-
- **CI/CD**: GitHub Actions
280-
- **Code Quality**: ruff, mypy
281-
- **Dependency Management**: uv
270+
- **ML Stack:** `scikit-learn` (Pipeline & Models), `pandas`, `joblib`.
271+
- **Backend & UI:** `Flask` (Inference API), `Streamlit` (Interactive Dashboard).
272+
- **Modern Tooling:** `uv` (Package Manager), `ruff` (Linter), `mypy` (Type Checking), `pydantic` (Validation).
273+
- **Testing:** `pytest`, `pytest-mock`, `pytest-cov`.
274+
- **Infrastructure:** `Docker`, `Docker Compose`, `GitHub Actions`.
275+
282276
</details>
283277

284-
---
285278

286-
**Remember**: The value of this project is in the **engineering practices**, not the model metrics. These practices ensure your ML models work reliably in production, regardless of the problem domain or dataset complexity.
279+
280+
> This project was developed with ❤️ by [Anibal Rojo](https://github.com/anibalrojosan) as a proof of concept for a real-world MLOps pipeline.
281+
282+
> **Remember**: The value of this project is in the **engineering practices**, not the model metrics. These practices ensure your ML models work reliably in production, regardless of the problem domain or dataset complexity.

0 commit comments

Comments
 (0)