forked from microsoft/BioGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteractive.py
48 lines (41 loc) · 1.53 KB
/
interactive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import argparse
from fairseq.models.transformer_lm import TransformerLanguageModel
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="../../data/PubMed/data-bin")
parser.add_argument("--model_dir", type=str, default="../../checkpoints/Pre-trained-BioGPT")
parser.add_argument("--model_file", type=str, default="checkpoint.pt")
parser.add_argument("--bpecodes", type=str, default="../../data/bpecodes")
parser.add_argument("--beam", type=int, default=5)
parser.add_argument("--lenpen", type=float, default=1.0)
parser.add_argument("--min_len", type=int, default=100)
parser.add_argument("--lower", default=False, action="store_true")
args, _ = parser.parse_known_args()
def main(args):
m = TransformerLanguageModel.from_pretrained(
args.model_dir,
args.model_file,
args.data_dir,
tokenizer='moses',
bpe='fastbpe',
bpe_codes=args.bpecodes,
min_len=args.min_len,
max_len_b=1024,
beam=args.beam,
lenpen=args.lenpen,
max_tokens=12000)
print(m.cfg)
if m.cfg.common.fp16:
print('Converting to float 16')
m.half()
m.cuda()
while True:
print("Please input and press enter:")
_src = input().strip()
src_tokens = m.encode(_src)
generate = m.generate([src_tokens], beam=args.beam)[0]
output = m.decode(generate[0]["tokens"])
print(output)
if __name__ == "__main__":
main(args)