Skip to content

Fix clip blip

Fix clip blip #2

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Inference Python Benchmarks Dataflow (2 part)
on:
schedule:
- cron: '50 19 * * *'
workflow_dispatch:
#Setting explicit permissions for the action to avoid the default permissions which are `write-all` in case of pull_request_target event
permissions:
actions: write
pull-requests: read
checks: read
contents: read
deployments: read
id-token: none
issues: read
discussions: read
packages: read
pages: read
repository-projects: read
security-events: read
statuses: read
# This allows a subsequently queued workflow run to interrupt previous runs
concurrency:
group: '${{ github.workflow }} @ ${{ github.event.issue.number || github.sha || github.head_ref || github.ref }}-${{ github.event.schedule || github.event.comment.id || github.event.sender.login }}'
cancel-in-progress: true
env:
DEVELOCITY_ACCESS_KEY: ${{ secrets.DEVELOCITY_ACCESS_KEY }}
GRADLE_ENTERPRISE_CACHE_USERNAME: ${{ secrets.GE_CACHE_USERNAME }}
GRADLE_ENTERPRISE_CACHE_PASSWORD: ${{ secrets.GE_CACHE_PASSWORD }}
INFLUXDB_USER: ${{ secrets.INFLUXDB_USER }}
INFLUXDB_USER_PASSWORD: ${{ secrets.INFLUXDB_USER_PASSWORD }}
jobs:
beam_Inference_Python_Benchmarks_Dataflow_2:
if: |
github.event_name == 'workflow_dispatch' ||
(github.event_name == 'schedule' && github.repository == 'apache/beam') ||
github.event.comment.body == 'Run Inference Benchmarks 2'
runs-on: [self-hosted, ubuntu-20.04, main]
timeout-minutes: 1000
name: ${{ matrix.job_name }} (${{ matrix.job_phrase }})
strategy:
matrix:

Check failure on line 61 in .github/workflows/beam_Inference_Python_Benchmarks_Dataflow_2.yml

View workflow run for this annotation

GitHub Actions / .github/workflows/beam_Inference_Python_Benchmarks_Dataflow_2.yml

Invalid workflow file

You have an error in your yaml syntax on line 61
job_name: ["beam_Inference_Python_Benchmarks_Dataflow_2]
job_phrase: ["Run Inference Benchmarks 2"]
steps:
- uses: actions/checkout@v4
- name: Setup repository
uses: ./.github/actions/setup-action
with:
comment_phrase: ${{ matrix.job_phrase }}
github_token: ${{ secrets.GITHUB_TOKEN }}
github_job: ${{ matrix.job_name }} (${{ matrix.job_phrase }})
- name: Setup Python environment
uses: ./.github/actions/setup-environment-action
with:
java-version: default
python-version: '3.10'
- name: Package Python SDK using Gradle
run: ./gradlew :sdks:python:sdist -PpythonVersion=3.10
- name: Configure Docker for Artifact Registry
run: gcloud auth configure-docker us-docker.pkg.dev
- name: Prepare test arguments
uses: ./.github/actions/test-arguments-action
with:
test-type: load
test-language: python
argument-file-paths: |
${{ github.workspace }}/.github/workflows/load-tests-pipeline-options/beam_Inference_Python_Benchmarks_Dataflow_2_Pytorch_Image_Classification_Rightfit.txt
${{ github.workspace }}/.github/workflows/load-tests-pipeline-options/beam_Inference_Python_Benchmarks_Dataflow_2_Pytorch_Image_Object_Detection.txt
${{ github.workspace }}/.github/workflows/load-tests-pipeline-options/beam_Inference_Python_Benchmarks_Dataflow_2_Pytorch_Image_Captioning.txt
# The env variables are created and populated in the test-arguments-action as "<github.job>_test_arguments_<argument_file_paths_index>"
- name: get current time
run: echo "NOW_UTC=$(date '+%m%d%H%M%S' --utc)" >> $GITHUB_ENV
- name: run PyTorch Image Object Detection Faster R-CNN ResNet-50 Batch CPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_image_object_detection_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_image_object_detection_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_2 }} --device=CPU --mode=batch --job_name=benchmark-tests-pytorch-image-object-detection-batch-${{env.NOW_UTC}} --metrics_table=torch_inference_image_object_detection_batch_cpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_image_object_detection_batch_cpu' \
- name: run PyTorch Image Captioning BLIP + CLIP Batch CPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_image_captioning_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_image_captioning_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_3 }} --device=CPU --mode=batch --job_name=benchmark-tests-pytorch-image-captioning-batch-${{env.NOW_UTC}} --metrics_table=torch_inference_image_captioning_batch_cpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_image_captioning_batch_cpu'
- name: run PyTorch Image Object Detection Faster R-CNN ResNet-50 Batch GPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_image_object_detection_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_image_object_detection_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_2 }} --device=GPU --worker_accelerator=type=nvidia-tesla-t4,count=1,install-nvidia-driver=true --mode=batch --job_name=benchmark-tests-pytorch-image-object-detection-batch-${{env.NOW_UTC}} --metrics_table=torch_inference_image_object_detection_batch_gpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_image_object_detection_batch_gpu' \
- name: run PyTorch Image Captioning BLIP + CLIP Batch GPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_image_captioning_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_image_captioning_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_3 }} --device=GPU --worker_accelerator=type=nvidia-tesla-t4,count=1,install-nvidia-driver=true --mode=batch --job_name=benchmark-tests-pytorch-image-captioning-batch-${{env.NOW_UTC}} --metrics_table=torch_inference_image_captioning_batch_gpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_image_captioning_batch_gpu' \
- name: run PyTorch Image Object Detection Faster R-CNN ResNet-50 Streaming CPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_image_object_detection_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_image_object_detection_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_2 }} --device=CPU --mode=streaming --job_name=benchmark-tests-pytorch-image-object-detection-streaming-${{env.NOW_UTC}} --metrics_table=torch_inference_image_object_detection_streaming_cpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_image_object_detection_streaming_cpu' \
- name: run PyTorch Image Captioning BLIP + CLIP Streaming CPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_image_captioning_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_image_captioning_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_3 }} --device=CPU --mode=streaming --job_name=benchmark-tests-pytorch-image-captioning-streaming-${{env.NOW_UTC}} --metrics_table=torch_inference_image_captioning_streaming_cpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_image_captioning_streaming_cpu'
- name: run PyTorch Image Object Detection Faster R-CNN ResNet-50 Streaming GPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_image_object_detection_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_image_object_detection_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_2 }} --device=GPU --worker_accelerator=type=nvidia-tesla-t4,count=1,install-nvidia-driver=true --mode=streaming --job_name=benchmark-tests-pytorch-image-object-detection-streaming-${{env.NOW_UTC}} --metrics_table=torch_inference_image_object_detection_streaming_gpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_image_object_detection_streaming_gpu' \
- name: run PyTorch Image Captioning BLIP + CLIP Streaming GPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_image_captioning_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_image_captioning_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_3 }} --device=GPU --worker_accelerator=type=nvidia-tesla-t4,count=1,install-nvidia-driver=true --mode=streaming --job_name=benchmark-tests-pytorch-image-captioning-streaming-${{env.NOW_UTC}} --metrics_table=torch_inference_image_captioning_streaming_gpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_image_captioning_streaming_gpu' \
- name: run PyTorch Image Classification EfficientNet-B0 Streaming (Right-fitting) CPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_imagenet_rightfit_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_rightfit_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_1 }} --device=CPU --enable_dedup=false --mode=streaming --job_name=benchmark-tests-pytorch-imagenet-rightfit-streaming-${{env.NOW_UTC}} --metrics_table=torch_inference_imagenet_stream_rightfit_cpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_imagenet_stream_rightfit_cpu' \
- name: run PyTorch Image Classification EfficientNet-B0 Streaming (Right-fitting Exactly-once) CPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_imagenet_rightfit_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_rightfit_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_1 }} --device=CPU --enable_dedup=true --mode=streaming --job_name=benchmark-tests-pytorch-imagenet-rightfit-streaming-${{env.NOW_UTC}} --metrics_table=torch_inference_imagenet_stream_rightfit_once_cpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_imagenet_stream_rightfit_once_cpu' \
- name: run PyTorch Image Classification EfficientNet-B0 Streaming (Right-fitting) GPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_imagenet_rightfit_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_rightfit_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_1 }} --device=GPU --experiments=worker_accelerator=type:nvidia-tesla-t4;count:1;install-nvidia-driver:5xx --enable_dedup=false --mode=streaming --job_name=benchmark-tests-pytorch-imagenet-rightfit-streaming-${{env.NOW_UTC}} --metrics_table=torch_inference_imagenet_stream_rightfit_gpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_imagenet_stream_rightfit_gpu' \
- name: run PyTorch Image Classification EfficientNet-B0 Streaming (Right-fitting Exactly-once) GPU
uses: ./.github/actions/gradle-command-self-hosted-action
timeout-minutes: 180
with:
gradle-command: :sdks:python:apache_beam:testing:load_tests:run
arguments: |
-PloadTest.mainClass=apache_beam.testing.benchmarks.inference.pytorch_imagenet_rightfit_benchmarks \
-Prunner=DataflowRunner \
-PpythonVersion=3.10 \
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_rightfit_requirements.txt \
'-PloadTest.args=${{ env.beam_Inference_Python_Benchmarks_Dataflow_2_test_arguments_1 }} --device=GPU --experiments=worker_accelerator=type:nvidia-tesla-t4;count:1;install-nvidia-driver:5xx --enable_dedup=true --mode=streaming --job_name=benchmark-tests-pytorch-imagenet-rightfit-streaming-${{env.NOW_UTC}} --metrics_table=torch_inference_imagenet_stream_rightfit_once_gpu --output_table=apache-beam-testing.beam_run_inference.result_torch_inference_imagenet_stream_rightfit_once_gpu'