-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathsimplify_udaf_expression.rs
177 lines (148 loc) · 5.64 KB
/
simplify_udaf_expression.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::{any::Any, sync::Arc};
use arrow_schema::{Field, Schema};
use datafusion::arrow::{array::Float32Array, record_batch::RecordBatch};
use datafusion::error::Result;
use datafusion::functions_aggregate::average::avg_udaf;
use datafusion::{arrow::datatypes::DataType, logical_expr::Volatility};
use datafusion::{assert_batches_eq, prelude::*};
use datafusion_common::cast::as_float64_array;
use datafusion_expr::function::{AggregateFunctionSimplification, StateFieldsArgs};
use datafusion_expr::simplify::SimplifyInfo;
use datafusion_expr::{
expr::AggregateFunction, function::AccumulatorArgs, Accumulator, AggregateUDF,
AggregateUDFImpl, GroupsAccumulator, Signature,
};
/// This example shows how to use the AggregateUDFImpl::simplify API to simplify/replace user
/// defined aggregate function with a different expression which is defined in the `simplify` method.
#[derive(Debug, Clone)]
struct BetterAvgUdaf {
signature: Signature,
}
impl BetterAvgUdaf {
/// Create a new instance of the GeoMeanUdaf struct
fn new() -> Self {
Self {
signature: Signature::exact(vec![DataType::Float64], Volatility::Immutable),
}
}
}
impl AggregateUDFImpl for BetterAvgUdaf {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"better_avg"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(DataType::Float64)
}
fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
unimplemented!("should not be invoked")
}
fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<Field>> {
unimplemented!("should not be invoked")
}
fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
true
}
fn create_groups_accumulator(
&self,
_args: AccumulatorArgs,
) -> Result<Box<dyn GroupsAccumulator>> {
unimplemented!("should not get here");
}
// we override method, to return new expression which would substitute
// user defined function call
fn simplify(&self) -> Option<AggregateFunctionSimplification> {
// as an example for this functionality we replace UDF function
// with build-in aggregate function to illustrate the use
let simplify = |aggregate_function: AggregateFunction, _: &dyn SimplifyInfo| {
Ok(Expr::AggregateFunction(AggregateFunction::new_udf(
avg_udaf(),
// yes it is the same Avg, `BetterAvgUdaf` was just a
// marketing pitch :)
aggregate_function.args,
aggregate_function.distinct,
aggregate_function.filter,
aggregate_function.order_by,
aggregate_function.null_treatment,
aggregate_function.within_group,
)))
};
Some(Box::new(simplify))
}
}
// create local session context with an in-memory table
fn create_context() -> Result<SessionContext> {
use datafusion::datasource::MemTable;
// define a schema.
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Float32, false),
Field::new("b", DataType::Float32, false),
]));
// define data in two partitions
let batch1 = RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Float32Array::from(vec![2.0, 4.0, 8.0])),
Arc::new(Float32Array::from(vec![2.0, 2.0, 2.0])),
],
)?;
let batch2 = RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Float32Array::from(vec![16.0])),
Arc::new(Float32Array::from(vec![2.0])),
],
)?;
let ctx = SessionContext::new();
// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
let provider = MemTable::try_new(schema, vec![vec![batch1], vec![batch2]])?;
ctx.register_table("t", Arc::new(provider))?;
Ok(ctx)
}
#[tokio::main]
async fn main() -> Result<()> {
let ctx = create_context()?;
let better_avg = AggregateUDF::from(BetterAvgUdaf::new());
ctx.register_udaf(better_avg.clone());
let result = ctx
.sql("SELECT better_avg(a) FROM t group by b")
.await?
.collect()
.await?;
let expected = [
"+-----------------+",
"| better_avg(t.a) |",
"+-----------------+",
"| 7.5 |",
"+-----------------+",
];
assert_batches_eq!(expected, &result);
let df = ctx.table("t").await?;
let df = df.aggregate(vec![], vec![better_avg.call(vec![col("a")])])?;
let results = df.collect().await?;
let result = as_float64_array(results[0].column(0))?;
assert!((result.value(0) - 7.5).abs() < f64::EPSILON);
println!("The average of [2,4,8,16] is {}", result.value(0));
Ok(())
}