-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathdataframe_in_memory.rs
60 lines (50 loc) · 2.08 KB
/
dataframe_in_memory.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::sync::Arc;
use datafusion::arrow::array::{Int32Array, StringArray};
use datafusion::arrow::datatypes::{DataType, Field, Schema};
use datafusion::arrow::record_batch::RecordBatch;
use datafusion::error::Result;
use datafusion::prelude::*;
/// This example demonstrates how to use the DataFrame API against in-memory data.
#[tokio::main]
async fn main() -> Result<()> {
// define a schema.
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Utf8, false),
Field::new("b", DataType::Int32, false),
]));
// define data.
let batch = RecordBatch::try_new(
schema,
vec![
Arc::new(StringArray::from(vec!["a", "b", "c", "d"])),
Arc::new(Int32Array::from(vec![1, 10, 10, 100])),
],
)?;
// declare a new context. In spark API, this corresponds to a new spark SQLsession
let ctx = SessionContext::new();
// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
ctx.register_batch("t", batch)?;
let df = ctx.table("t").await?;
// construct an expression corresponding to "SELECT a, b FROM t WHERE b = 10" in SQL
let filter = col("b").eq(lit(10));
let df = df.select_columns(&["a", "b"])?.filter(filter)?;
// print the results
df.show().await?;
Ok(())
}