You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+6-6
Original file line number
Diff line number
Diff line change
@@ -31,21 +31,21 @@ Its main objectives are as follows:
31
31
| EasyScheduler | Azkaban | Airflow
32
32
-- | -- | -- | --
33
33
**Stability** | | |
34
-
Single point of failure | Decentralized multi-master and multi-worker | Yes Single Web and Scheduler Combination Node | Yes. Single Scheduler
34
+
Single point of failure | Decentralized multi-master and multi-worker | Yes <br/> Single Web and Scheduler Combination Node | Yes <br/> Single Scheduler
35
35
Additional HA requirements | Not required (HA is supported by itself) | DB | Celery / Dask / Mesos + Load Balancer + DB
36
36
Overload processing | Task queue mechanism, the number of schedulable tasks on a single machine can be flexibly configured, when too many tasks will be cached in the task queue, will not cause machine jam. | Jammed the server when there are too many tasks | Jammed the server when there are too many tasks
37
37
**Easy to use** | | |
38
-
DAG Monitoring Interface | Visualization process defines key information such as task status, task type, retry times, task running machine, visual variables and so on at a glance. | Only task status can be seen | Can't visually distinguish task types
39
-
Visual process definition | Yes All process definition operations are visualized, dragging tasks to draw DAGs, configuring data sources and resources. At the same time, for third-party systems, the api mode operation is provided. | No DAG and custom upload via custom DSL | No DAG is drawn through Python code, which is inconvenient to use, especially for business people who can't write code.
DAG Monitoring Interface | Visualization process defines key information such as task status, task type, retry times, task running machine, visual variables and so on at a glance. | Only task status can be seen | Can't visually distinguish task types
39
+
Visual process definition | Yes <br/> All process definition operations are visualized, dragging tasks to draw DAGs, configuring data sources and resources. At the same time, for third-party systems, the api mode operation is provided. | No <br/> DAG and custom upload via custom DSL | No <br/> DAG is drawn through Python code, which is inconvenient to use, especially for business people who can't write code.
Suspend and resume | Support pause, recover operation | No Can only kill the workflow first and then re-run | No Can only kill the workflow first and then re-run
42
+
Suspend and resume | Support pause, recover operation | No <br/> Can only kill the workflow first and then re-run | No <br/> Can only kill the workflow first and then re-run
43
43
Whether to support multiple tenants | Users on easyscheduler can achieve many-to-one or one-to-one mapping relationship through tenants and Hadoop users, which is very important for scheduling large data jobs. " Supports traditional shell tasks, while supporting large data platform task scheduling: MR, Spark, SQL (mysql, postgresql, hive, sparksql), Python, Procedure, Sub_Process | No | No
44
44
Task type | Supports traditional shell tasks, and also support big data platform task scheduling: MR, Spark, SQL (mysql, postgresql, hive, sparksql), Python, Procedure, Sub_Process | shell、gobblin、hadoopJava、java、hive、pig、spark、hdfsToTeradata、teradataToHdfs | BashOperator、DummyOperator、MySqlOperator、HiveOperator、EmailOperator、HTTPOperator、SqlOperator
45
45
Compatibility | Support the scheduling of big data jobs like spark, hive, Mr. At the same time, it is more compatible with big data business because it supports multiple tenants. | Because it does not support multi-tenant, it is not flexible enough to use business in big data platform. | Because it does not support multi-tenant, it is not flexible enough to use business in big data platform.
46
46
**Scalability** | | |
47
47
Whether to support custom task types | Yes | Yes | Yes
48
-
Is Cluster Extension Supported? | Yes The scheduler uses distributed scheduling, and the overall scheduling capability will increase linearly with the scale of the cluster. Master and Worker support dynamic online and offline. | Yes, but complicated Executor horizontal extend | Yes, but complicated Executor horizontal extend
48
+
Is Cluster Extension Supported? | Yes <br/> The scheduler uses distributed scheduling, and the overall scheduling capability will increase linearly with the scale of the cluster. Master and Worker support dynamic online and offline. | Yes <br/> but complicated Executor horizontal extend | Yes <br/> but complicated Executor horizontal extend
0 commit comments