Skip to content

Commit 13a16e8

Browse files
MehulBatrawuchong
authored andcommitted
remove unwanted emojis to make document standard (#1865)
(cherry picked from commit 0b5ec3b)
1 parent 6f1715f commit 13a16e8

File tree

2 files changed

+24
-24
lines changed

2 files changed

+24
-24
lines changed

website/docs/streaming-lakehouse/integrate-data-lakes/iceberg.md

Lines changed: 23 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -13,9 +13,9 @@ To integrate Fluss with Iceberg, you must enable lakehouse storage and configure
1313
> **NOTE**: Iceberg requires JDK11 or later. Please ensure that both your Fluss deployment and the Flink cluster used for tiering services are running on JDK11+.
1414
1515

16-
## ⚙️ Configure Iceberg as LakeHouse Storage
16+
## Configure Iceberg as LakeHouse Storage
1717

18-
### 🔧 Configure Iceberg in Cluster Configurations
18+
### Configure Iceberg in Cluster Configurations
1919

2020
To configure Iceberg as the lakehouse storage, you must configure the following configurations in `server.yaml`:
2121
```yaml
@@ -27,13 +27,13 @@ datalake.iceberg.type: hadoop
2727
datalake.iceberg.warehouse: /tmp/iceberg
2828
```
2929
30-
#### 🔧 Configuration Processing
30+
#### Configuration Processing
3131
3232
Fluss processes Iceberg configurations by stripping the `datalake.iceberg.` prefix and uses the stripped configurations (without the prefix `datalake.iceberg.`) to initialize the Iceberg catalog.
3333

3434
This approach enables passing custom configurations for Iceberg catalog initialization. Check out the [Iceberg Catalog Properties](https://iceberg.apache.org/docs/1.9.1/configuration/#catalog-properties) for more details on available catalog configurations.
3535

36-
#### 📋 Supported Catalog Types
36+
#### Supported Catalog Types
3737

3838
Fluss supports all Iceberg-compatible catalog types:
3939

@@ -56,7 +56,7 @@ datalake.iceberg.catalog-impl: <your_iceberg_catalog_impl_class_name>
5656
datalake.iceberg.catalog-impl: org.apache.iceberg.snowflake.SnowflakeCatalog
5757
```
5858

59-
#### 🔧 Prerequisites
59+
#### Prerequisites
6060

6161
##### 1. Hadoop Dependencies Configuration
6262

@@ -95,19 +95,19 @@ Fluss only bundles catalog implementations included in the `iceberg-core` module
9595

9696
The Iceberg version that Fluss bundles is based on `1.9.1`. Please ensure the JARs you add are compatible with `Iceberg-1.9.1`.
9797

98-
#### ⚠️ Important Notes
98+
#### Important Notes
9999

100100
- Ensure all JAR files are compatible with Iceberg 1.9.1
101101
- If using an existing Hadoop environment, it's recommended to use the `HADOOP_CLASSPATH` environment variable
102102
- Configuration changes take effect after restarting the Fluss service
103103

104-
### 🚀 Start Tiering Service to Iceberg
104+
### Start Tiering Service to Iceberg
105105

106106
To tier Fluss's data to Iceberg, you must start the datalake tiering service. For guidance, you can refer to [Start The Datalake Tiering Service](maintenance/tiered-storage/lakehouse-storage.md#start-the-datalake-tiering-service). Although the example uses Paimon, the process is also applicable to Iceberg.
107107

108-
#### 🔧 Prerequisites: Hadoop Dependencies
108+
#### Prerequisites: Hadoop Dependencies
109109

110-
**⚠️ Important**: Iceberg has a strong dependency on Hadoop. You must ensure Hadoop-related classes are available in the classpath before starting the tiering service.
110+
**Important**: Iceberg has a strong dependency on Hadoop. You must ensure Hadoop-related classes are available in the classpath before starting the tiering service.
111111

112112
##### Option 1: Use Existing Hadoop Environment (Recommended)
113113

@@ -144,7 +144,7 @@ export HADOOP_HOME=$(pwd)/hadoop-3.3.5
144144
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
145145
```
146146

147-
#### 🔧 Prepare Required JARs
147+
#### Prepare Required JARs
148148

149149
Follow the dependency management guidelines below for the [Prepare required jars](maintenance/tiered-storage/lakehouse-storage.md#prepare-required-jars) step:
150150

@@ -176,7 +176,7 @@ iceberg-aws-bundle-1.9.1.jar
176176
failsafe-3.3.2.jar
177177
```
178178

179-
#### 🚀 Start Datalake Tiering Service
179+
#### Start Datalake Tiering Service
180180

181181
When following the [Start Datalake Tiering Service](maintenance/tiered-storage/lakehouse-storage.md#start-datalake-tiering-service) guide, use Iceberg-specific configurations as parameters when starting the Flink tiering job:
182182

@@ -188,7 +188,7 @@ When following the [Start Datalake Tiering Service](maintenance/tiered-storage/l
188188
--datalake.iceberg.warehouse /tmp/iceberg
189189
```
190190

191-
#### ⚠️ Important Notes
191+
#### Important Notes
192192

193193
- Ensure all JAR files are compatible with Iceberg 1.9.1
194194
- Verify that all required dependencies are in the `${FLINK_HOME}/lib` directory
@@ -202,7 +202,7 @@ When a Fluss table is created or altered with the option `'table.datalake.enable
202202
The schema of the Iceberg table matches that of the Fluss table, except for the addition of three system columns at the end: `__bucket`, `__offset`, and `__timestamp`.
203203
These system columns help Fluss clients consume data from Iceberg in a streaming fashion, such as seeking by a specific bucket using an offset or timestamp.
204204

205-
### 🔧 Basic Configuration
205+
### Basic Configuration
206206

207207
Here is an example using Flink SQL to create a table with data lake enabled:
208208

@@ -224,7 +224,7 @@ CREATE TABLE fluss_order_with_lake (
224224
);
225225
```
226226

227-
### ⚙️ Iceberg Table Properties
227+
### Iceberg Table Properties
228228

229229
You can also specify Iceberg [table properties](https://iceberg.apache.org/docs/latest/configuration/#table-properties) when creating a datalake-enabled Fluss table by using the `iceberg.` prefix within the Fluss table properties clause.
230230

@@ -249,7 +249,7 @@ CREATE TABLE fluss_order_with_lake (
249249
);
250250
```
251251

252-
### 🔑 Primary Key Tables
252+
### Primary Key Tables
253253

254254
Primary key tables in Fluss are mapped to Iceberg tables with:
255255

@@ -289,7 +289,7 @@ CREATE TABLE user_profiles (
289289
SORTED BY (__offset ASC);
290290
```
291291

292-
### 📝 Log Tables
292+
### Log Tables
293293

294294
The table mapping for Fluss log tables varies depending on whether the bucket key is specified or not.
295295

@@ -360,7 +360,7 @@ CREATE TABLE order_events (
360360
SORTED BY (__offset ASC);
361361
```
362362

363-
### 🗂️ Partitioned Tables
363+
### Partitioned Tables
364364

365365
For Fluss partitioned tables, Iceberg first partitions by Fluss partition keys, then follows the above rules:
366366

@@ -394,7 +394,7 @@ CREATE TABLE daily_sales (
394394
SORTED BY (__offset ASC);
395395
```
396396

397-
### 📊 System Columns
397+
### System Columns
398398

399399
All Iceberg tables created by Fluss include three system columns:
400400

@@ -406,7 +406,7 @@ All Iceberg tables created by Fluss include three system columns:
406406

407407
## Read Tables
408408

409-
### 🐿️ Reading with Apache Flink
409+
### Reading with Apache Flink
410410

411411
When a table has the configuration `table.datalake.enabled = 'true'`, its data exists in two layers:
412412

@@ -444,7 +444,7 @@ Key behavior for data retention:
444444
- **Expired Fluss log data** (controlled by `table.log.ttl`) remains accessible via Iceberg if previously tiered
445445
- **Cleaned-up partitions** in partitioned tables (controlled by `table.auto-partition.num-retention`) remain accessible via Iceberg if previously tiered
446446

447-
### 🔍 Reading with Other Engines
447+
### Reading with Other Engines
448448

449449
Since data tiered to Iceberg from Fluss is stored as standard Iceberg tables, you can use any Iceberg-compatible engine. Below is an example using [StarRocks](https://docs.starrocks.io/docs/data_source/catalog/iceberg/iceberg_catalog/):
450450

@@ -504,7 +504,7 @@ When integrating with Iceberg, Fluss automatically converts between Fluss data t
504504

505505
## Maintenance and Optimization
506506

507-
### 📦 Auto Compaction
507+
### Auto Compaction
508508

509509
The table option `table.datalake.auto-compaction` (disabled by default) provides per-table control over automatic compaction.
510510
When enabled for a specific table, compaction is automatically triggered during write operations to that table by the tiering service.
@@ -528,7 +528,7 @@ CREATE TABLE example_table (
528528
- **Storage**: Optimizes storage usage by removing duplicate data
529529
- **Maintenance**: Automatically handles data organization
530530

531-
### 📊 Snapshot Metadata
531+
### Snapshot Metadata
532532

533533
Fluss adds specific metadata to Iceberg snapshots for traceability:
534534

@@ -578,7 +578,7 @@ For partitioned tables, the metadata structure includes partition information:
578578
| `offset` | Offset within the partition's log | `3`, `1000` |
579579

580580

581-
## 🚫 Current Limitations
581+
## Current Limitations
582582

583583
- **Complex Types**: Array, Map, and Row types are not supported
584584
- **Multiple bucket keys**: Not supported until Iceberg implements multi-argument partition transforms

website/docs/streaming-lakehouse/integrate-data-lakes/paimon.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -176,7 +176,7 @@ The following table shows the mapping between [Fluss data types](table-design/da
176176
| BINARY | BINARY |
177177
| BYTES | BYTES |
178178

179-
## 📊 Snapshot Metadata
179+
## Snapshot Metadata
180180

181181
Fluss adds specific metadata to Paimon snapshots for traceability:
182182

0 commit comments

Comments
 (0)