|
| 1 | +import logging |
| 2 | + |
| 3 | +logger = logging.getLogger(__name__) |
| 4 | +logger.setLevel(logging.INFO) |
| 5 | + |
| 6 | +import torch |
| 7 | + |
| 8 | +def split_einsum(q, k, v, mask, heads, dim_head): |
| 9 | + """ Attention Implementation backing AttentionImplementations.SPLIT_EINSUM |
| 10 | +
|
| 11 | + - Implements https://machinelearning.apple.com/research/neural-engine-transformers |
| 12 | + - Recommended for ANE |
| 13 | + - Marginally slower on GPU |
| 14 | + """ |
| 15 | + mh_q = [ |
| 16 | + q[:, head_idx * dim_head:(head_idx + 1) * |
| 17 | + dim_head, :, :] for head_idx in range(heads) |
| 18 | + ] # (bs, dim_head, 1, max_seq_length) * heads |
| 19 | + |
| 20 | + k = k.transpose(1, 3) |
| 21 | + mh_k = [ |
| 22 | + k[:, :, :, |
| 23 | + head_idx * dim_head:(head_idx + 1) * dim_head] |
| 24 | + for head_idx in range(heads) |
| 25 | + ] # (bs, max_seq_length, 1, dim_head) * heads |
| 26 | + |
| 27 | + mh_v = [ |
| 28 | + v[:, head_idx * dim_head:(head_idx + 1) * |
| 29 | + dim_head, :, :] for head_idx in range(heads) |
| 30 | + ] # (bs, dim_head, 1, max_seq_length) * heads |
| 31 | + |
| 32 | + attn_weights = [ |
| 33 | + torch.einsum("bchq,bkhc->bkhq", [qi, ki]) * (dim_head**-0.5) |
| 34 | + for qi, ki in zip(mh_q, mh_k) |
| 35 | + ] # (bs, max_seq_length, 1, max_seq_length) * heads |
| 36 | + |
| 37 | + if mask is not None: |
| 38 | + for head_idx in range(heads): |
| 39 | + attn_weights[head_idx] = attn_weights[head_idx] + mask |
| 40 | + |
| 41 | + attn_weights = [ |
| 42 | + aw.softmax(dim=1) for aw in attn_weights |
| 43 | + ] # (bs, max_seq_length, 1, max_seq_length) * heads |
| 44 | + attn = [ |
| 45 | + torch.einsum("bkhq,bchk->bchq", wi, vi) |
| 46 | + for wi, vi in zip(attn_weights, mh_v) |
| 47 | + ] # (bs, dim_head, 1, max_seq_length) * heads |
| 48 | + |
| 49 | + attn = torch.cat(attn, dim=1) # (bs, dim, 1, max_seq_length) |
| 50 | + return attn |
| 51 | + |
| 52 | + |
| 53 | +CHUNK_SIZE = 512 |
| 54 | + |
| 55 | +def split_einsum_v2(q, k, v, mask, heads, dim_head): |
| 56 | + """ Attention Implementation backing AttentionImplementations.SPLIT_EINSUM_V2 |
| 57 | +
|
| 58 | + - Implements https://machinelearning.apple.com/research/neural-engine-transformers |
| 59 | + - Recommended for ANE |
| 60 | + - Marginally slower on GPU |
| 61 | + - Chunks the query sequence to avoid large intermediate tensors and improves ANE performance |
| 62 | + """ |
| 63 | + query_seq_length = q.size(3) |
| 64 | + num_chunks = query_seq_length // CHUNK_SIZE |
| 65 | + |
| 66 | + if num_chunks == 0: |
| 67 | + logger.info( |
| 68 | + "AttentionImplementations.SPLIT_EINSUM_V2: query sequence too short to chunk " |
| 69 | + f"({query_seq_length}<{CHUNK_SIZE}), fall back to AttentionImplementations.SPLIT_EINSUM (safe to ignore)") |
| 70 | + return split_einsum(q, k, v, mask, heads, dim_head) |
| 71 | + |
| 72 | + logger.info( |
| 73 | + "AttentionImplementations.SPLIT_EINSUM_V2: Splitting query sequence length of " |
| 74 | + f"{query_seq_length} into {num_chunks} chunks") |
| 75 | + |
| 76 | + mh_q = [ |
| 77 | + q[:, head_idx * dim_head:(head_idx + 1) * |
| 78 | + dim_head, :, :] for head_idx in range(heads) |
| 79 | + ] # (bs, dim_head, 1, max_seq_length) * heads |
| 80 | + |
| 81 | + # Chunk the query sequence for each head |
| 82 | + mh_q_chunked = [ |
| 83 | + [h_q[..., chunk_idx * CHUNK_SIZE:(chunk_idx + 1) * CHUNK_SIZE] for chunk_idx in range(num_chunks)] |
| 84 | + for h_q in mh_q |
| 85 | + ] # ((bs, dim_head, 1, QUERY_SEQ_CHUNK_SIZE) * num_chunks) * heads |
| 86 | + |
| 87 | + k = k.transpose(1, 3) |
| 88 | + mh_k = [ |
| 89 | + k[:, :, :, |
| 90 | + head_idx * dim_head:(head_idx + 1) * dim_head] |
| 91 | + for head_idx in range(heads) |
| 92 | + ] # (bs, max_seq_length, 1, dim_head) * heads |
| 93 | + |
| 94 | + mh_v = [ |
| 95 | + v[:, head_idx * dim_head:(head_idx + 1) * |
| 96 | + dim_head, :, :] for head_idx in range(heads) |
| 97 | + ] # (bs, dim_head, 1, max_seq_length) * heads |
| 98 | + |
| 99 | + attn_weights = [ |
| 100 | + [ |
| 101 | + torch.einsum("bchq,bkhc->bkhq", [qi_chunk, ki]) * (dim_head**-0.5) |
| 102 | + for qi_chunk in h_q_chunked |
| 103 | + ] for h_q_chunked, ki in zip(mh_q_chunked, mh_k) |
| 104 | + ] # ((bs, max_seq_length, 1, chunk_size) * num_chunks) * heads |
| 105 | + |
| 106 | + attn_weights = [ |
| 107 | + [aw_chunk.softmax(dim=1) for aw_chunk in aw_chunked] |
| 108 | + for aw_chunked in attn_weights |
| 109 | + ] # ((bs, max_seq_length, 1, chunk_size) * num_chunks) * heads |
| 110 | + |
| 111 | + attn = [ |
| 112 | + [ |
| 113 | + torch.einsum("bkhq,bchk->bchq", wi_chunk, vi) |
| 114 | + for wi_chunk in wi_chunked |
| 115 | + ] for wi_chunked, vi in zip(attn_weights, mh_v) |
| 116 | + ] # ((bs, dim_head, 1, chunk_size) * num_chunks) * heads |
| 117 | + |
| 118 | + attn = torch.cat([ |
| 119 | + torch.cat(attn_chunked, dim=3) for attn_chunked in attn |
| 120 | + ], dim=1) # (bs, dim, 1, max_seq_length) |
| 121 | + |
| 122 | + return attn |
| 123 | + |
| 124 | + |
| 125 | +def original(q, k, v, mask, heads, dim_head): |
| 126 | + """ Attention Implementation backing AttentionImplementations.ORIGINAL |
| 127 | +
|
| 128 | + - Not recommended for ANE |
| 129 | + - Recommended for GPU |
| 130 | + """ |
| 131 | + bs = q.size(0) |
| 132 | + mh_q = q.view(bs, heads, dim_head, -1) |
| 133 | + mh_k = k.view(bs, heads, dim_head, -1) |
| 134 | + mh_v = v.view(bs, heads, dim_head, -1) |
| 135 | + |
| 136 | + attn_weights = torch.einsum("bhcq,bhck->bhqk", [mh_q, mh_k]) |
| 137 | + attn_weights.mul_(dim_head**-0.5) |
| 138 | + |
| 139 | + if mask is not None: |
| 140 | + attn_weights = attn_weights + mask |
| 141 | + |
| 142 | + attn_weights = attn_weights.softmax(dim=3) |
| 143 | + |
| 144 | + attn = torch.einsum("bhqk,bhck->bhcq", [attn_weights, mh_v]) |
| 145 | + attn = attn.contiguous().view(bs, heads * dim_head, 1, -1) |
| 146 | + return attn |
0 commit comments