Skip to content

undefined reference to `DebugLog' in micro_error_reporter.cpp #35

Open
@pv-98

Description

@pv-98

I am working with Arduino_TensorFlowLite-2.4.0-ALPHA-precompiled library and trying to compile my arduino sketch. But I keep getting this error Library Arduino_TensorFlowLite has been declared precompiled: Using precompiled library in C:\Users\prane\Documents\Arduino\libraries\Arduino_TensorFlowLite-2.4.0-ALPHA-precompiled\src\cortex-m4\fpv4-sp-d16-softfp C:\Users\prane\Documents\Arduino\libraries\Arduino_TensorFlowLite-2.4.0-ALPHA-precompiled\src\cortex-m4\fpv4-sp-d16-softfp\libtensorflowlite.a(micro_error_reporter.cpp.o): In function tflite::MicroErrorReporter::Report(char const*, std::__va_list)':
/home/arduino/workspace/Libraries-Google-Tensorflow-scraper/Arduino/libraries/tensorflow_lite_mirror/src/tensorflow/lite/micro/micro_error_reporter.cpp:35: undefined reference to DebugLog' /home/arduino/workspace/Libraries-Google-Tensorflow-scraper/Arduino/libraries/tensorflow_lite_mirror/src/tensorflow/lite/micro/micro_error_reporter.cpp:36: undefined reference to DebugLog'
collect2.exe: error: ld returned 1 exit status

exit status 1

Compilation error: exit status 1`

I've included my sketch below. Any help would be greatly helpful. Thanks

`#include "TensorFlowLite.h"
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
//#include "tensorflow/lite/micro/system_setup.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "image_data.h"
#include "model_data.h"

const int kInputTensorSize = 1 * 28 * 28 * 1;
const int kNumClasses = 10;
namespace{
tflite::ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
TfLiteTensor* input = nullptr;
TfLiteTensor* output = nullptr;
int inference_count = 0;

constexpr int kTensorArenaSize = 2*1024;
uint8_t tensor_arena[kTensorArenaSize];
}

void setup() {
Serial.begin(115200);
// tflite::InitializeTarget();
// memset(tensor_arena, 0, kTensorArenaSize*sizeof(uint8_t));

// Set up logging.
static tflite::MicroErrorReporter micro_error_reporter;
error_reporter = &micro_error_reporter;

model = tflite::GetModel(model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
Serial.println("Model provided is schema version "
+ String(model->version()) + " not equal "
+ "to supported version "
+ String(TFLITE_SCHEMA_VERSION));
return;
} else {
Serial.println("Model version: " + String(model->version()));
}

// This pulls in all the operation implementations we need.
static tflite::AllOpsResolver resolver;

// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;

// Build an interpreter to run the model with.
// tflite::MicroInterpreter* static_interpreter_ptr = new tflite::MicroInterpreter(
// model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
// interpreter = static_interpreter_ptr;

// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
Serial.println("AllocateTensors() failed");
return;
} else {
Serial.println("AllocateTensor() Success");
}

size_t used_size = interpreter->arena_used_bytes();
Serial.println("Area used bytes: " + String(used_size));
input = interpreter->input(0);
output = interpreter->output(0);

/* check input */
if (input->type != kTfLiteFloat32) {
Serial.println("input type mismatch. expected input type is float32");
return;
} else {
Serial.println("input type is float32");
}

Serial.println("Model input:");
Serial.println("input->type: " + String(input->type));
Serial.println("dims->size: " + String(input->dims->size));
for (int n = 0; n < input->dims->size; ++n) {
Serial.println("dims->data[n]: " + String(input->dims->data[n]));
}

Serial.println("Model output:");
Serial.println("dims->size: " + String(output->dims->size));
for (int n = 0; n < output->dims->size; ++n) {
Serial.println("dims->data[n]: " + String(output->dims->data[n]));
}

}
void loop() {

// Define the input image array
const uint8_t* kImageDataPtr = kImageData; // Pointer to start of image data
uint8_t input_image[kInputTensorSize];
for (int i = 0; i < kInputTensorSize; i++) {
input_image[i] = *(kImageDataPtr++);
}

for(int i=0; i<kInputTensorSize; i++){
input->data.f[i] = (float)input_image[i] / 255.0;
}

// Run inference
interpreter->Invoke();

// Print the predicted class
int predicted_class = -1;
float max_score = -1;
for (int i = 0; i < kNumClasses; i++) {
float score = output->data.f[i];
if (score > max_score) {
predicted_class = i;
max_score = score;
}
}
Serial.println(predicted_class);

}`

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions