-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodnewton1.c
426 lines (334 loc) · 11 KB
/
modnewton1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/* ode-initval2/modnewton1.c
*
* Copyright (C) 2008, 2009, 2010 Tuomo Keskitalo
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* A modified Newton iteration method for solving non-linear
equations in implicit Runge-Kutta methods.
*/
/* References:
Ascher, U.M., Petzold, L.R., Computer methods for ordinary
differential and differential-algebraic equations, SIAM,
Philadelphia, 1998. ISBN 0898714125, 9780898714128
Hairer, E., Wanner, G., Solving Ordinary Differential
Equations II: Stiff and Differential-Algebraic Problems,
Springer, 1996. ISBN 3540604529, 9783540604525
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_odeiv2.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_blas.h>
#include "odeiv_util.h"
typedef struct
{
/* iteration matrix I - h A (*) J */
gsl_matrix *IhAJ;
/* permutation for LU-decomposition */
gsl_permutation *p;
/* difference vector for kth Newton iteration */
gsl_vector *dYk;
/* scaled dYk with desired error level */
gsl_vector *dScal;
/* current Runge-Kutta points (absolute values) */
double *Yk;
/* function values at points Yk */
double *fYk;
/* right hand side of Newton iteration formula */
gsl_vector *rhs;
/* stopping criterion value from previous step */
double eeta_prev;
}
modnewton1_state_t;
static void *
modnewton1_alloc (size_t dim, size_t stage)
{
modnewton1_state_t *state =
(modnewton1_state_t *) malloc (sizeof (modnewton1_state_t));
if (state == 0)
{
GSL_ERROR_NULL ("failed to allocate space for modnewton1_state_t",
GSL_ENOMEM);
}
state->IhAJ = gsl_matrix_alloc (dim * stage, dim * stage);
if (state->IhAJ == 0)
{
free (state);
GSL_ERROR_NULL ("failed to allocate space for IhAJ", GSL_ENOMEM);
}
state->p = gsl_permutation_alloc (dim * stage);
if (state->p == 0)
{
gsl_matrix_free (state->IhAJ);
free (state);
GSL_ERROR_NULL ("failed to allocate space for p", GSL_ENOMEM);
}
state->dYk = gsl_vector_alloc (dim * stage);
if (state->dYk == 0)
{
gsl_permutation_free (state->p);
gsl_matrix_free (state->IhAJ);
free (state);
GSL_ERROR_NULL ("failed to allocate space for dYk", GSL_ENOMEM);
}
state->dScal = gsl_vector_alloc (dim * stage);
if (state->dScal == 0)
{
gsl_vector_free (state->dYk);
gsl_permutation_free (state->p);
gsl_matrix_free (state->IhAJ);
free (state);
GSL_ERROR_NULL ("failed to allocate space for dScal", GSL_ENOMEM);
}
state->Yk = (double *) malloc (dim * stage * sizeof (double));
if (state->Yk == 0)
{
gsl_vector_free (state->dScal);
gsl_vector_free (state->dYk);
gsl_permutation_free (state->p);
gsl_matrix_free (state->IhAJ);
free (state);
GSL_ERROR_NULL ("failed to allocate space for Yk", GSL_ENOMEM);
}
state->fYk = (double *) malloc (dim * stage * sizeof (double));
if (state->fYk == 0)
{
free (state->Yk);
gsl_vector_free (state->dScal);
gsl_vector_free (state->dYk);
gsl_permutation_free (state->p);
gsl_matrix_free (state->IhAJ);
free (state);
GSL_ERROR_NULL ("failed to allocate space for Yk", GSL_ENOMEM);
}
state->rhs = gsl_vector_alloc (dim * stage);
if (state->rhs == 0)
{
free (state->fYk);
free (state->Yk);
gsl_vector_free (state->dScal);
gsl_vector_free (state->dYk);
gsl_permutation_free (state->p);
gsl_matrix_free (state->IhAJ);
free (state);
GSL_ERROR_NULL ("failed to allocate space for rhs", GSL_ENOMEM);
}
state->eeta_prev = GSL_DBL_MAX;
return state;
}
static int
modnewton1_init (void *vstate, const gsl_matrix * A,
const double h, const gsl_matrix * dfdy,
const gsl_odeiv2_system * sys)
{
/* Initializes the method by forming the iteration matrix IhAJ
and generating its LU-decomposition
*/
modnewton1_state_t *state = (modnewton1_state_t *) vstate;
gsl_matrix *const IhAJ = state->IhAJ;
gsl_permutation *const p = state->p;
const size_t dim = sys->dimension;
const size_t stage = A->size1;
state->eeta_prev = GSL_DBL_MAX;
/* Generate IhAJ */
{
size_t i, j, k, m;
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++)
for (k = 0; k < stage; k++)
for (m = 0; m < stage; m++)
{
size_t x = dim * k + i;
size_t y = dim * m + j;
if (x != y)
gsl_matrix_set (IhAJ, x, y,
-h * gsl_matrix_get (A, k, m) *
gsl_matrix_get (dfdy, i, j));
else
gsl_matrix_set (IhAJ, x, y,
1.0 - h * gsl_matrix_get (A, k, m) *
gsl_matrix_get (dfdy, i, j));
}
}
/* decompose */
{
int signum;
int s = gsl_linalg_LU_decomp (IhAJ, p, &signum);
if (s != GSL_SUCCESS)
return s;
}
return GSL_SUCCESS;
}
static int
modnewton1_solve (void *vstate, const gsl_matrix * A,
const double c[], const double t, const double h,
const double y0[], const gsl_odeiv2_system * sys,
double YZ[], const double errlev[])
{
/* Solves the non-linear equation system resulting from implicit
Runge-Kutta methods by a modified Newton iteration. The
modified Newton iteration with this problem is stated in the
form
IhAJ * dYk = rhs
in which IhAJ is the iteration matrix: IhAJ = (I - hA (*) J) in
which (*) is the Kronecker matrix product (size of IhAJ =
dim*stage, dim*stage), dYk is the Runge-Kutta point (Y)
difference vector for kth Newton iteration: dYk = Y(k+1) - Y(k),
and rhs = Y(k) - y0 - h * sum j=1..stage (a_j * f(Y(k)))
This function solves dYk by LU-decomposition of IhAJ with partial
pivoting.
*/
modnewton1_state_t *state = (modnewton1_state_t *) vstate;
gsl_matrix *const IhAJ = state->IhAJ;
gsl_permutation *const p = state->p;
gsl_vector *const dYk = state->dYk;
double *const Yk = state->Yk;
double *const fYk = state->fYk;
gsl_vector *const rhs = state->rhs;
double *const eeta_prev = &(state->eeta_prev);
gsl_vector *const dScal = state->dScal;
const size_t dim = sys->dimension;
const size_t stage = A->size1;
int status = GSL_CONTINUE; /* Convergence status for Newton iteration */
/* Set starting values for iteration. Use starting values of Y(k) =
y0. FIXME: Implement better initial guess described in Hairer and
Wanner.
*/
{
size_t j, m;
gsl_vector_set_zero (dYk);
for (j = 0; j < stage; j++)
for (m = 0; m < dim; m++)
Yk[j * dim + m] = y0[m];
}
/* Loop modified Newton iterations */
{
size_t iter = 0;
size_t j, m, n;
/* Maximum number of Newton iterations. */
const size_t max_iter = 7;
double dScal_norm = 0.0; /* Newton iteration step length */
double dScal_norm_prev = 0.0; /* Previous dScal_norm */
while (status == GSL_CONTINUE && iter < max_iter)
{
iter++;
/* Update Y(k) and evaluate function */
for (j = 0; j < stage; j++)
{
for (m = 0; m < dim; m++)
{
Yk[j * dim + m] += gsl_vector_get (dYk, j * dim + m);
}
{
int s = GSL_ODEIV_FN_EVAL (sys, t + c[j] * h, &Yk[j * dim],
&fYk[j * dim]);
if (s != GSL_SUCCESS)
{
return s;
}
}
}
/* Calculate rhs */
for (j = 0; j < stage; j++)
for (m = 0; m < dim; m++)
{
double sum = 0;
for (n = 0; n < stage; n++)
sum += gsl_matrix_get (A, j, n) * fYk[n * dim + m];
gsl_vector_set (rhs, j * dim + m,
-1.0 * Yk[j * dim + m] + y0[m] + h * sum);
}
/* Solve dYk */
{
int s = gsl_linalg_LU_solve (IhAJ, p, rhs, dYk);
if (s != GSL_SUCCESS)
{
return s;
}
}
/* Evaluate convergence according to method by Hairer and
Wanner, section IV.8. The iteration step is normalized by
desired error level before calculation of the norm, to take
the tolerance on each component of y into account.
*/
{
/* relative change in two Newton iteration steps */
double theta_k;
/* transformation of theta_k */
double eeta_k = 0.0;
for (j = 0; j < stage; j++)
for (m = 0; m < dim; m++)
{
gsl_vector_set (dScal, j * dim + m,
gsl_vector_get (dYk, j * dim + m)
/ errlev[m]);
}
dScal_norm_prev = dScal_norm;
dScal_norm = gsl_blas_dnrm2 (dScal);
theta_k = dScal_norm / dScal_norm_prev;
if (iter > 1)
{
/* check for increase in step size, which indicates divergence */
if (theta_k >= 1.0)
{
return GSL_FAILURE;
}
eeta_k = theta_k / (1.0 - theta_k);
}
else
{
eeta_k = pow (GSL_MAX_DBL (*eeta_prev, GSL_DBL_EPSILON), 0.8);
}
*eeta_prev = eeta_k;
if (eeta_k * dScal_norm < 1.0)
{
status = GSL_SUCCESS;
}
}
}
}
/* No convergence reached within allowed iterations */
if (status != GSL_SUCCESS)
{
return GSL_FAILURE;
}
/* Give solution in YZ */
else
{
size_t j, m;
for (j = 0; j < stage; j++)
for (m = 0; m < dim; m++)
YZ[j * dim + m] =
Yk[j * dim + m] + gsl_vector_get (dYk, j * dim + m);
return status;
}
}
static void
modnewton1_free (void *vstate)
{
modnewton1_state_t *state = (modnewton1_state_t *) vstate;
gsl_vector_free (state->rhs);
free (state->fYk);
free (state->Yk);
gsl_vector_free (state->dScal);
gsl_vector_free (state->dYk);
gsl_permutation_free (state->p);
gsl_matrix_free (state->IhAJ);
free (state);
}