-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmsbdf.c
1808 lines (1485 loc) · 44.5 KB
/
msbdf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* ode-initval2/msbdf.c
*
* Copyright (C) 2009, 2010 Tuomo Keskitalo
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* A variable-coefficient linear multistep backward differentiation
formula (BDF) method in Nordsieck form. This stepper uses the
explicit BDF formula as predictor and implicit BDF formula as
corrector. A modified Newton iteration method is used to
solve the system of non-linear equations. Method order varies
dynamically between 1 and 5.
References:
Byrne, G. D., and Hindmarsh, A. C., A Polyalgorithm for the
Numerical Solution of Ordinary Differential Equations,
ACM Trans. Math. Software, 1 (1975), pp. 71-96.
Brown, P. N., Byrne, G. D., and Hindmarsh, A. C., VODE: A
Variable-coefficient ODE Solver, SIAM J. Sci. Stat. Comput. 10,
(1989), pp. 1038-1051.
Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban,
R., Shumaker, D. E., and Woodward, C. S., SUNDIALS: Suite of
Nonlinear and Differential/Algebraic Equation Solvers, ACM
Trans. Math. Software 31 (2005), pp. 363-396.
Note: The algorithms have been adapted for GSL ode-initval2
framework.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_odeiv2.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#include "odeiv_util.h"
/* Maximum order of BDF methods */
#define MSBDF_MAX_ORD 5
/* Steps until Jacobian evaluation is forced */
#define MSBDF_JAC_WAIT 50
/* Steps until iteration matrix M evaluation is forced */
#define MSBDF_M_WAIT 20
typedef struct
{
/* Nordsieck history matrix. Includes concatenated
Nordsieck vectors [y_n, h*y_n', (h^2/2!)*y_n'', ...,
(h^ord/ord!)*d^(ord)(y_n)]. Nordsieck vector number i is located
at z[i*dim] (i=0..ord).
*/
double *z;
double *zbackup; /* backup of Nordsieck matrix */
double *ytmp; /* work area */
double *ytmp2; /* work area */
double *l; /* polynomial coefficients */
double *hprev; /* previous step sizes */
double *hprevbackup; /* backup of hprev */
size_t *ordprev; /* orders of previous calls */
size_t *ordprevbackup; /* backup of ordprev */
double *errlev; /* desired error level of y */
gsl_vector *abscor; /* absolute y values for correction */
gsl_vector *abscorscaled; /* scaled abscor for order evaluation */
gsl_vector *relcor; /* relative y values for correction */
gsl_vector *svec; /* saved abscor & work area */
gsl_vector *tempvec; /* work area */
const gsl_odeiv2_driver *driver; /* pointer to gsl_odeiv2_driver object */
gsl_matrix *dfdy; /* Jacobian */
double *dfdt; /* storage for time derivative of f */
gsl_matrix *M; /* Newton iteration matrix */
gsl_permutation *p; /* permutation for LU decomposition of M */
gsl_vector *rhs; /* right hand side equations (-G) */
long int ni; /* stepper call counter */
size_t ord; /* current order of method */
double tprev; /* t point of previous call */
size_t ordwait; /* counter for order change */
size_t ordwaitbackup; /* backup of ordwait */
size_t failord; /* order of convergence failure */
double failt; /* t point of convergence failure */
double ordp1coeffprev; /* saved order coefficient */
size_t nJ; /* step counter for Jacobian evaluation */
size_t nM; /* step counter for update of M */
double gammaprev; /* gamma of previous call */
double gammaprevbackup; /* backup of gammaprev */
size_t failcount; /* counter for rejected steps */
}
msbdf_state_t;
/* Introduce msbdf_reset for use in msbdf_alloc and _apply */
static int msbdf_reset (void *, size_t);
static void *
msbdf_alloc (size_t dim)
{
msbdf_state_t *state = (msbdf_state_t *) malloc (sizeof (msbdf_state_t));
if (state == 0)
{
GSL_ERROR_NULL ("failed to allocate space for msbdf_state", GSL_ENOMEM);
}
state->z = (double *) malloc ((MSBDF_MAX_ORD + 1) * dim * sizeof (double));
if (state->z == 0)
{
free (state);
GSL_ERROR_NULL ("failed to allocate space for z", GSL_ENOMEM);
}
state->zbackup =
(double *) malloc ((MSBDF_MAX_ORD + 1) * dim * sizeof (double));
if (state->zbackup == 0)
{
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for zbackup", GSL_ENOMEM);
}
state->ytmp = (double *) malloc (dim * sizeof (double));
if (state->ytmp == 0)
{
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM);
}
state->ytmp2 = (double *) malloc (dim * sizeof (double));
if (state->ytmp2 == 0)
{
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for ytmp2", GSL_ENOMEM);
}
state->l = (double *) malloc ((MSBDF_MAX_ORD + 1) * sizeof (double));
if (state->l == 0)
{
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for l", GSL_ENOMEM);
}
state->hprev = (double *) malloc (MSBDF_MAX_ORD * sizeof (double));
if (state->hprev == 0)
{
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for hprev", GSL_ENOMEM);
}
state->hprevbackup = (double *) malloc (MSBDF_MAX_ORD * sizeof (double));
if (state->hprevbackup == 0)
{
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for hprevbackup", GSL_ENOMEM);
}
state->ordprev = (size_t *) malloc (MSBDF_MAX_ORD * sizeof (size_t));
if (state->ordprev == 0)
{
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for ordprev", GSL_ENOMEM);
}
state->ordprevbackup = (size_t *) malloc (MSBDF_MAX_ORD * sizeof (size_t));
if (state->ordprevbackup == 0)
{
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for ordprevbackup",
GSL_ENOMEM);
}
state->errlev = (double *) malloc (dim * sizeof (double));
if (state->errlev == 0)
{
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for errlev", GSL_ENOMEM);
}
state->abscor = gsl_vector_alloc (dim);
if (state->abscor == 0)
{
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for abscor", GSL_ENOMEM);
}
state->relcor = gsl_vector_alloc (dim);
if (state->relcor == 0)
{
gsl_vector_free (state->abscor);
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for relcor", GSL_ENOMEM);
}
state->svec = gsl_vector_alloc (dim);
if (state->svec == 0)
{
gsl_vector_free (state->relcor);
gsl_vector_free (state->abscor);
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for svec", GSL_ENOMEM);
}
state->tempvec = gsl_vector_alloc (dim);
if (state->tempvec == 0)
{
gsl_vector_free (state->svec);
gsl_vector_free (state->relcor);
gsl_vector_free (state->abscor);
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for tempvec", GSL_ENOMEM);
}
state->dfdy = gsl_matrix_alloc (dim, dim);
if (state->dfdy == 0)
{
gsl_vector_free (state->tempvec);
gsl_vector_free (state->svec);
gsl_vector_free (state->relcor);
gsl_vector_free (state->abscor);
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM);
}
state->dfdt = (double *) malloc (dim * sizeof (double));
if (state->dfdt == 0)
{
gsl_matrix_free (state->dfdy);
gsl_vector_free (state->tempvec);
gsl_vector_free (state->svec);
gsl_vector_free (state->relcor);
gsl_vector_free (state->abscor);
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM);
}
state->M = gsl_matrix_alloc (dim, dim);
if (state->M == 0)
{
free (state->dfdt);
gsl_matrix_free (state->dfdy);
gsl_vector_free (state->tempvec);
gsl_vector_free (state->svec);
gsl_vector_free (state->relcor);
gsl_vector_free (state->abscor);
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for M", GSL_ENOMEM);
}
state->p = gsl_permutation_alloc (dim);
if (state->p == 0)
{
gsl_matrix_free (state->M);
free (state->dfdt);
gsl_matrix_free (state->dfdy);
gsl_vector_free (state->tempvec);
gsl_vector_free (state->svec);
gsl_vector_free (state->relcor);
gsl_vector_free (state->abscor);
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for p", GSL_ENOMEM);
}
state->rhs = gsl_vector_alloc (dim);
if (state->rhs == 0)
{
gsl_permutation_free (state->p);
gsl_matrix_free (state->M);
free (state->dfdt);
gsl_matrix_free (state->dfdy);
gsl_vector_free (state->tempvec);
gsl_vector_free (state->svec);
gsl_vector_free (state->relcor);
gsl_vector_free (state->abscor);
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for rhs", GSL_ENOMEM);
}
state->abscorscaled = gsl_vector_alloc (dim);
if (state->abscorscaled == 0)
{
gsl_vector_free (state->rhs);
gsl_permutation_free (state->p);
gsl_matrix_free (state->M);
free (state->dfdt);
gsl_matrix_free (state->dfdy);
gsl_vector_free (state->tempvec);
gsl_vector_free (state->svec);
gsl_vector_free (state->relcor);
gsl_vector_free (state->abscor);
free (state->errlev);
free (state->ordprevbackup);
free (state->ordprev);
free (state->hprevbackup);
free (state->hprev);
free (state->l);
free (state->ytmp2);
free (state->ytmp);
free (state->zbackup);
free (state->z);
free (state);
GSL_ERROR_NULL ("failed to allocate space for abscorscaled", GSL_ENOMEM);
}
msbdf_reset ((void *) state, dim);
state->driver = NULL;
return state;
}
static int
msbdf_failurehandler (void *vstate, const size_t dim, const double t)
{
/* Internal failure handler routine for msbdf. Adjusted strategy
for GSL: Decrease order if this is the second time a failure
has occurred at this order and point.
*/
msbdf_state_t *state = (msbdf_state_t *) vstate;
const size_t ord = state->ord;
if (ord > 1 && (ord - state->ordprev[0] == 0) &&
ord == state->failord && t == state->failt)
{
state->ord--;
}
/* Save information about failure */
state->failord = ord;
state->failt = t;
state->ni++;
/* Force reinitialization if failure took place at lowest
order
*/
if (ord == 1)
{
msbdf_reset (vstate, dim);
}
return GSL_SUCCESS;
}
static int
msbdf_calccoeffs (const size_t ord, const size_t ordwait,
const double h, const double hprev[],
double l[],
double *errcoeff, double *ordm1coeff,
double *ordp1coeff, double *ordp2coeff, double *gamma)
{
/* Calculates coefficients (l) of polynomial Lambda, error and
auxiliary order change evaluation coefficients.
*/
if (ord == 1)
{
l[0] = 1.0;
l[1] = 1.0;
*errcoeff = 0.5;
*ordp1coeff = 2.0;
{
const double hsum = h + hprev[0];
const double a5 = -1.5;
const double a6 = -1.0 - h / hsum;
const double c2 = 2.0 / (1.0 - a6 + a5);
*ordp2coeff = fabs (c2 * (h / hsum) * 3.0 * a5);
}
}
else
{
size_t i, j;
double hsum = h;
double coeff1 = -1.0;
double x;
/* Calculate the actual polynomial coefficients (l) */
DBL_ZERO_MEMSET (l, MSBDF_MAX_ORD + 1);
l[0] = 1.0;
l[1] = 1.0;
for (i = 2; i < ord; i++)
{
hsum += hprev[i - 2];
coeff1 += -1.0 / i;
for (j = i; j > 0; j--)
{
l[j] += h / hsum * l[j - 1];
}
}
coeff1 += -1.0 / ord;
x = -l[1] - coeff1;
for (i = ord; i > 0; i--)
{
l[i] += l[i - 1] * x;
}
#ifdef DEBUG
{
size_t di;
printf ("-- calccoeffs l: ");
for (di = 0; di < ord + 1; di++)
{
printf ("%.5e ", l[di]);
}
printf ("\n");
}
#endif
hsum += hprev[ord - 2];
{
const double coeff2 = -l[1] - h / hsum;
const double a1 = 1.0 - coeff2 + coeff1;
const double a2 = 1.0 + ord * a1;
/* Calculate error coefficient */
*errcoeff = fabs (a1 / (coeff1 * a2));
/* Calculate auxiliary coefficients used in evaluation of change
of order
*/
if (ordwait < 2)
{
const double a3 = coeff1 + 1.0 / ord;
const double a4 = coeff2 + h / hsum;
const double c1 = a3 / (1.0 - a4 + a3);
*ordm1coeff = fabs (c1 / (x / l[ord]));
*ordp1coeff = fabs (a2 / (l[ord] * (h / hsum) / x));
hsum += hprev[ord - 1];
{
const double a5 = coeff1 - 1.0 / (ord + 1.0);
const double a6 = coeff2 - h / hsum;
const double c2 = a2 / (1.0 - a6 + a5);
*ordp2coeff = fabs (c2 * (h / hsum) * (ord + 2) * a5);
}
}
}
}
*gamma = h / l[1];
#ifdef DEBUG
printf ("-- calccoeffs ordm1coeff=%.5e ", *ordm1coeff);
printf ("ordp1coeff=%.5e ", *ordp1coeff);
printf ("ordp2coeff=%.5e ", *ordp2coeff);
printf ("errcoeff=%.5e\n", *errcoeff);
#endif
return GSL_SUCCESS;
}
static int
msbdf_update (void *vstate, const size_t dim, gsl_matrix * dfdy, double *dfdt,
const double t, const double *y, const gsl_odeiv2_system * sys,
gsl_matrix * M, gsl_permutation * p,
const size_t iter, size_t * nJ, size_t * nM,
const double tprev, const double failt,
const double gamma, const double gammaprev, const double hratio)
{
/* Evaluates Jacobian dfdy and updates iteration matrix M
if criteria for update is met.
*/
/* Jacobian is evaluated
- at first step
- if MSBDF_JAC_WAIT steps have been made without re-evaluation
- in case of a convergence failure if
--- change in gamma is small, or
--- convergence failure resulted in step size decrease
*/
const double c = 0.2;
const double gammarel = fabs (gamma / gammaprev - 1.0);
if (*nJ == 0 || *nJ > MSBDF_JAC_WAIT ||
(t == failt && (gammarel < c || hratio < 1.0)))
{
#ifdef DEBUG
printf ("-- evaluate jacobian\n");
#endif
int s = GSL_ODEIV_JA_EVAL (sys, t, y, dfdy->data, dfdt);
if (s == GSL_EBADFUNC)
{
return s;
}
if (s != GSL_SUCCESS)
{
msbdf_failurehandler (vstate, dim, t);
#ifdef DEBUG
printf ("-- FAIL at jacobian function evaluation\n");
#endif
return s;
}
/* Reset counter */
*nJ = 0;
}
/* Iteration matrix M (and it's LU decomposition) is generated
- at first step
- if MSBDF_M_WAIT steps have been made without an update
- if change in gamma is significant (e.g. change in step size)
- if previous step was rejected
*/
if (*nM == 0 || *nM > MSBDF_M_WAIT || gammarel >= c ||
t == tprev || t == failt)
{
#ifdef DEBUG
printf ("-- update M, gamma=%.5e\n", gamma);
#endif
size_t i;
gsl_matrix_memcpy (M, dfdy);
gsl_matrix_scale (M, -gamma);
for (i = 0; i < dim; i++)
{
gsl_matrix_set (M, i, i, gsl_matrix_get (M, i, i) + 1.0);
}
{
int signum;
int s = gsl_linalg_LU_decomp (M, p, &signum);
if (s != GSL_SUCCESS)
{
return GSL_FAILURE;
}
}
/* Reset counter */
*nM = 0;
}
return GSL_SUCCESS;
}
static int
msbdf_corrector (void *vstate, const gsl_odeiv2_system * sys,
const double t, const double h, const size_t dim,
const double z[], const double errlev[],
const double l[], const double errcoeff,
gsl_vector * abscor, gsl_vector * relcor,
double ytmp[], double ytmp2[],
gsl_matrix * dfdy, double dfdt[], gsl_matrix * M,
gsl_permutation * p, gsl_vector * rhs,
size_t * nJ, size_t * nM,
const double tprev, const double failt,
const double gamma, const double gammaprev,
const double hprev0)
{
/* Calculates the correction step (abscor). Equation
system M = I - gamma * dfdy = -G is solved by Newton iteration.
*/
size_t mi, i;
const size_t max_iter = 3; /* Maximum number of iterations */
double convrate = 1.0; /* convergence rate */
double stepnorm = 0.0; /* norm of correction step */
double stepnormprev = 0.0; /* previous norm value */
/* Evaluate at predicted values */
{
int s = GSL_ODEIV_FN_EVAL (sys, t + h, z, ytmp);
if (s == GSL_EBADFUNC)
{
return s;
}
if (s != GSL_SUCCESS)
{
msbdf_failurehandler (vstate, dim, t);
#ifdef DEBUG
printf ("-- FAIL at user function evaluation\n");
#endif
return s;
}
}
/* Calculate correction step (abscor) */
gsl_vector_set_zero (abscor);
for (mi = 0; mi < max_iter; mi++)
{
const double safety = 0.3;
const double safety2 = 0.1;
/* Generate or update Jacobian and/or iteration matrix M if needed */
if (mi == 0)
{
int s = msbdf_update (vstate, dim, dfdy, dfdt, t + h, z,
sys, M, p, mi,
nJ, nM, tprev, failt,
gamma, gammaprev,
h / hprev0);
if (s != GSL_SUCCESS)
{
return s;
}
}
/* Evaluate the right hand side (-G) */
for (i = 0; i < dim; i++)
{
const double r = -1.0 * gsl_vector_get (abscor, i) -
z[1 * dim + i] / l[1] + gamma * ytmp[i];
gsl_vector_set (rhs, i, r);
}
/* Solve system of equations */
{
int s = gsl_linalg_LU_solve (M, p, rhs, relcor);
if (s != GSL_SUCCESS)
{
msbdf_failurehandler (vstate, dim, t);
#ifdef DEBUG
printf ("-- FAIL at LU_solve\n");
#endif
return GSL_FAILURE;
}
}
#ifdef DEBUG
{
size_t di;
printf ("-- dstep: ");
for (di = 0; di < dim; di++)
{
printf ("%.5e ", gsl_vector_get (relcor, di));
}
printf ("\n");
}
#endif
/* Add iteration results */
for (i = 0; i < dim; i++)
{
const double r =
gsl_vector_get (abscor, i) + gsl_vector_get (relcor, i);
gsl_vector_set (abscor, i, r);
ytmp2[i] = z[i] + r;
gsl_vector_set (relcor, i, gsl_vector_get (relcor, i) / errlev[i]);
}
#ifdef DEBUG
{
size_t di;
printf ("-- abscor: ");
for (di = 0; di < dim; di++)
{
printf ("%.5e ", gsl_vector_get (abscor, di));
}
printf ("\n");
}
#endif
/* Convergence test. Norms used are root-mean-square norms. */
stepnorm = gsl_blas_dnrm2 (relcor) / sqrt (dim);
if (mi > 0)
{
convrate = GSL_MAX_DBL (safety * convrate, stepnorm / stepnormprev);
}
else
{
convrate = 1.0;
}
{
const double convtest =
GSL_MIN_DBL (convrate, 1.0) * stepnorm * errcoeff / safety2;
#ifdef DEBUG
printf
("-- newt iter loop %d, errcoeff=%.5e, stepnorm =%.5e, convrate = %.5e, convtest = %.5e\n",
(int) mi, errcoeff, stepnorm, convrate, convtest);
#endif
if (convtest <= 1.0)
{
break;
}
}
/* Check for divergence during iteration */
{
const double div_const = 2.0;
if (mi > 1 && stepnorm > div_const * stepnormprev)
{
msbdf_failurehandler (vstate, dim, t);
#ifdef DEBUG
printf ("-- FAIL, diverging Newton iteration\n");
#endif
return GSL_FAILURE;
}
}
/* Evaluate at new y */
{
int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp2, ytmp);
if (s == GSL_EBADFUNC)
{
return s;
}
if (s != GSL_SUCCESS)
{
msbdf_failurehandler (vstate, dim, t);
#ifdef DEBUG
printf ("-- FAIL at user function evaluation\n");
#endif
return s;
}
}
stepnormprev = stepnorm;
}
#ifdef DEBUG
printf ("-- Newton iteration exit at mi=%d\n", (int) mi);
#endif
/* Handle convergence failure */
if (mi == max_iter)
{
msbdf_failurehandler (vstate, dim, t);
#ifdef DEBUG
printf ("-- FAIL, max_iter reached\n");
#endif
return GSL_FAILURE;
}
return GSL_SUCCESS;
}
static int
msbdf_eval_order (gsl_vector * abscorscaled, gsl_vector * tempvec,
gsl_vector * svec, const double errcoeff,
const size_t dim, const double errlev[],
const double ordm1coeff, const double ordp1coeff,
const double ordp1coeffprev, const double ordp2coeff,
const double hprev[],
const double h, const double z[],
size_t * ord)
{
/* Evaluates and executes change in method order (current, current-1
or current+1). Order which maximizes the step length is selected.
*/
size_t i;
/* step size estimates at current order, order-1 and order+1 */
double ordest = 0.0;
double ordm1est = 0.0;
double ordp1est = 0.0;
const double safety = 1e-6;
const double bias = 6.0;
const double bias2 = 10.0;
const double min_incr = 1.5;
/* Relative step length estimate for current order */
ordest = 1.0 / (pow (bias * gsl_blas_dnrm2 (abscorscaled) / sqrt (dim)
* errcoeff, 1.0 / (*ord + 1)) + safety);
/* Relative step length estimate for order ord - 1 */
if (*ord > 1)
{
for (i = 0; i < dim; i++)
{
gsl_vector_set (tempvec, i, z[*ord * dim + i] / errlev[i]);
}
ordm1est = 1.0 / (pow (bias * gsl_blas_dnrm2 (tempvec) / sqrt (dim)
/ ordm1coeff, 1.0 / (*ord)) + safety);
}
else
{
ordm1est = 0.0;