Skip to content

Commit 02ee91d

Browse files
authored
Use batch_inversion_and_mul within native lagrange interpolation (#63)
1 parent 989f579 commit 02ee91d

File tree

1 file changed

+6
-9
lines changed

1 file changed

+6
-9
lines changed

src/poly/evaluations/univariate/lagrange_interpolator.rs

Lines changed: 6 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
use crate::poly::domain::vanishing_poly::VanishingPolynomial;
2-
use ark_ff::{batch_inversion, PrimeField};
2+
use ark_ff::{batch_inversion_and_mul, PrimeField};
33
use ark_std::vec::Vec;
44
/// Struct describing Lagrange interpolation for a multiplicative coset I,
55
/// with |I| a power of 2.
@@ -71,21 +71,18 @@ impl<F: PrimeField> LagrangeInterpolator<F> {
7171
- Z_{H}(t) = \prod_{j} (t-h*g^j) = (t^m-h^m), and
7272
- v_{i} = 1 / \prod_{j \neq i} h(g^i-g^j).
7373
Below we use the fact that v_{0} = 1/(m * h^(m-1)) and v_{i+1} = g * v_{i}.
74-
We compute the inverse of each coefficient, and then batch invert the entire result.
74+
We first compute the inverse of each coefficient, except for the Z_H(t) term.
75+
We then batch invert the entire result, and multiply by Z_H(t).
7576
*/
76-
let vp_t_inv = self
77-
.domain_vp
78-
.evaluate(&interpolation_point)
79-
.inverse()
80-
.unwrap();
8177
let mut inverted_lagrange_coeffs: Vec<F> = Vec::with_capacity(self.all_domain_elems.len());
8278
for i in 0..self.domain_order {
83-
let l = vp_t_inv * self.v_inv_elems[i];
79+
let l = self.v_inv_elems[i];
8480
let r = self.all_domain_elems[i];
8581
inverted_lagrange_coeffs.push(l * (interpolation_point - r));
8682
}
83+
let vp_t = self.domain_vp.evaluate(&interpolation_point);
8784
let lagrange_coeffs = inverted_lagrange_coeffs.as_mut_slice();
88-
batch_inversion::<F>(lagrange_coeffs);
85+
batch_inversion_and_mul::<F>(lagrange_coeffs, &vp_t);
8986
lagrange_coeffs.iter().cloned().collect()
9087
}
9188

0 commit comments

Comments
 (0)