-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpe_k_3to4.vhd
1003 lines (840 loc) · 32.6 KB
/
pe_k_3to4.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
-- File: pe_k_3to4.vhd
-- Date: 19 November 2009
-- Project: Zuker
-- Author: Arpith Chacko Jacob
-- Department of Computer Science and Engineering
-- Washington University in Saint Louis
-- Description:
-- Processing element implementing the cell k=3,4 of the zuker linear
-- array.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
library work;
use work.zuker_pkg.all;
entity pe_k_3to4 is
generic (
K : natural := 5;
-- When true delay registers are placed in block ram memories
USE_BRAM : boolean := false
);
port (
clk : in sl;
reset : in sl;
--
-- INPUT
-- DEPENDENCIES
--
-- PVI1(i, j-1, k-1)
in_PVI1_i_jm1_km1 : in slv (CELL_WIDTH-1 downto 0);
-- PVI2(i+1, j, k-1)
in_PVI2_ip1_j_km1 : in slv (CELL_WIDTH-1 downto 0);
-- PBI'(i+1, j-1, k-2)
in_VBIP_ip1_jm1_km2 : in slv (CELL_WIDTH-1 downto 0);
-- V(i+2, j-2, k-1)
in_V_ip2_jm2_km1 : in slv (CELL_WIDTH-1 downto 0);
-- VBI(i, j, k+1)
in_VBI_i_j_kp1 : in slv (CELL_WIDTH-1 downto 0);
-- PVB1(i, j-1, k-1)
in_PVB1_i_jm1_km1 : in slv (CELL_WIDTH-1 downto 0);
-- PVB2(i+1, j, k-1)
in_PVB2_ip1_j_km1 : in slv (CELL_WIDTH-1 downto 0);
-- T(i, j, k+1)
in_T_i_j_kp1 : in slv (CELL_WIDTH-1 downto 0);
-- PW2(i+1, j, k-1)
in_PW2_ip1_j_km1 : in slv (CELL_WIDTH-1 downto 0);
-- PW3(i, j-1, k-1)
in_PW3_i_jm1_km1 : in slv (CELL_WIDTH-1 downto 0);
-- VBB(i, j, k+1)
in_VBB_i_j_kp1 : in slv (CELL_WIDTH-1 downto 0);
-- CONTROL SIGNALS
--
in_k_eq_j_m_i_m_2 : in sl;
in_k_eq_j_m_i_div_2 : in sl;
in_k2_eq_j_m_i : in sl;
--
-- OUTPUT
--
-- output dependencies
out_PVI1_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_PVI2_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_VBIP_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_VBI_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_PVB1_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_PVB2_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_VBB_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_PW1_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_PW2_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_PW3_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_PW4_i_j_k : out slv (CELL_WIDTH-1 downto 0);
out_T_i_j_k : out slv (CELL_WIDTH-1 downto 0);
-- output control signals
out_k_eq_j_m_i_m_2 : out sl;
out_k_eq_j_m_i_div_2 : out sl;
out_k2_eq_j_m_i : out sl
);
end entity;
architecture rtl of pe_k_3to4 is
component delay_pipe is
generic (
DATA_WIDTH : natural := 1;
DELAY_STATES : natural := 1;
NEEDS_RESET : boolean := true;
-- When needs reset=true, True: set all vals to 1, else 0
RESET_VAL_HIGH : boolean := false
);
port (
clk : in sl;
reset : in sl;
din : in slv (DATA_WIDTH-1 downto 0);
dout : out slv (DATA_WIDTH-1 downto 0)
);
end component;
component delay_fifo is
port (
rd_en : in STD_LOGIC := 'X';
wr_en : in STD_LOGIC := 'X';
full : out STD_LOGIC;
empty : out STD_LOGIC;
clk : in STD_LOGIC := 'X';
srst : in STD_LOGIC := 'X';
dout : out STD_LOGIC_VECTOR ( 17 downto 0 );
din : in STD_LOGIC_VECTOR ( 17 downto 0 )
);
end component;
component pvi_kgt1 is
port (
PVI_in : in slv (CELL_WIDTH-1 downto 0);
PVI : out slv (CELL_WIDTH-1 downto 0)
);
end component;
component vbip_kge3 is
generic (
K : natural := 3
);
port (
VBIP_in : in slv (CELL_WIDTH-1 downto 0);
PVI1 : in slv (CELL_WIDTH-1 downto 0);
PVI2 : in slv (CELL_WIDTH-1 downto 0);
VBIP : out slv (CELL_WIDTH-1 downto 0)
);
end component;
component vbi_keq3to4 is
port (
VBI_in : in slv (CELL_WIDTH-1 downto 0);
k_eq_j_m_i_m_2 : in sl;
VBI : out slv (CELL_WIDTH-1 downto 0)
);
end component;
component pvb_kgt1 is
port (
PVB_in : in slv (CELL_WIDTH-1 downto 0);
PVB : out slv (CELL_WIDTH-1 downto 0)
);
end component;
component vbb_kgt1 is
generic (
K : natural := 3
);
port (
VBB_in : in slv (CELL_WIDTH-1 downto 0);
PVB1 : in slv (CELL_WIDTH-1 downto 0);
PVB2 : in slv (CELL_WIDTH-1 downto 0);
k_eq_j_m_i_m_2 : in sl;
VBB : out slv (CELL_WIDTH-1 downto 0)
);
end component;
component pw1
port (
PW1_in : in slv (CELL_WIDTH-1 downto 0);
PW3 : in slv (CELL_WIDTH-1 downto 0);
k2_eq_j_m_i : in sl;
PW1 : out slv (CELL_WIDTH-1 downto 0)
);
end component;
component pw2_kgt1 is
port (
PW2_in : in slv (CELL_WIDTH-1 downto 0);
PW2 : out slv (CELL_WIDTH-1 downto 0)
);
end component;
component pw3_kgt1 is
port (
PW3_in : in slv (CELL_WIDTH-1 downto 0);
PW3 : out slv (CELL_WIDTH-1 downto 0)
);
end component;
component pw4 is
port (
PW4_in : in slv (CELL_WIDTH-1 downto 0);
PW2 : in slv (CELL_WIDTH-1 downto 0);
k2_eq_j_m_i : in sl;
PW4 : out slv (CELL_WIDTH-1 downto 0)
);
end component;
component t is
port (
T_in : in slv (CELL_WIDTH-1 downto 0);
PW1 : in slv (CELL_WIDTH-1 downto 0);
PW2 : in slv (CELL_WIDTH-1 downto 0);
PW3 : in slv (CELL_WIDTH-1 downto 0);
PW4 : in slv (CELL_WIDTH-1 downto 0);
k_eq_j_m_i_div_2 : in sl;
T : out slv (CELL_WIDTH-1 downto 0)
);
end component;
-----------------------------------------------------------------------------
-- Link signals
-----------------------------------------------------------------------------
signal int_k2_eq_j_m_i : slv (0 downto 0);
signal int_k_eq_j_m_i_div_2 : slv (0 downto 0);
signal in_k2_eq_j_m_i_link : slv (0 downto 0);
signal in_k_eq_j_m_i_m_2_link : slv (0 downto 0);
signal in_k_eq_j_m_i_div_2_link : slv (0 downto 0);
signal in_PVI1_i_jm1_km1_link : slv (CELL_WIDTH-1 downto 0);
signal in_PVI2_ip1_j_km1_link : slv (CELL_WIDTH-1 downto 0);
signal in_VBIP_ip1_jm1_km2_link : slv (CELL_WIDTH-1 downto 0);
signal in_VBI_i_j_kp1_link : slv (CELL_WIDTH-1 downto 0);
signal in_PVB1_i_jm1_km1_link : slv (CELL_WIDTH-1 downto 0);
signal in_PVB2_ip1_j_km1_link : slv (CELL_WIDTH-1 downto 0);
signal in_T_i_j_kp1_link : slv (CELL_WIDTH-1 downto 0);
signal in_PW1_i_jm1_k_link : slv (CELL_WIDTH-1 downto 0);
signal in_PW2_ip1_j_km1_link : slv (CELL_WIDTH-1 downto 0);
signal in_PW3_i_jm1_km1_link : slv (CELL_WIDTH-1 downto 0);
signal in_PW4_ip1_j_k_link : slv (CELL_WIDTH-1 downto 0);
signal in_VBB_i_j_kp1_link : slv (CELL_WIDTH-1 downto 0);
-----------------------------------------------------------------------------
-- Signals used for block ram based delays
-----------------------------------------------------------------------------
-- signals used for FIFO delay
signal wr_start : slv(0 downto 0);
signal delay_wr : slv(0 downto 0);
signal delay_fifo_din1 : slv(17 downto 0);
signal delay_fifo_rd1 : slv(0 downto 0);
signal delay_fifo_dout1 : slv(17 downto 0);
signal delay_fifo_din2 : slv(17 downto 0);
signal delay_fifo_rd2 : slv(0 downto 0);
signal delay_fifo_dout2 : slv(17 downto 0);
signal delay_fifo_din3 : slv(17 downto 0);
signal delay_fifo_rd3 : slv(0 downto 0);
signal delay_fifo_dout3 : slv(17 downto 0);
signal delay_fifo_din4 : slv(17 downto 0);
signal delay_fifo_rd4 : slv(0 downto 0);
signal delay_fifo_dout4 : slv(17 downto 0);
signal delay_fifo_din5 : slv(17 downto 0);
signal delay_fifo_rd5 : slv(0 downto 0);
signal delay_fifo_dout5 : slv(17 downto 0);
type RETIMING_ARRAY is array (1 to NO_RETIMING_REGS) of slv(17 downto 0);
signal fifo_retiming1 : RETIMING_ARRAY;
signal fifo_retiming2 : RETIMING_ARRAY;
signal fifo_retiming3 : RETIMING_ARRAY;
signal fifo_retiming4 : RETIMING_ARRAY;
signal fifo_retiming5 : RETIMING_ARRAY;
-----------------------------------------------------------------------------
-- Intermediate computation signals
-----------------------------------------------------------------------------
signal PVI1_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal PVI2_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal VBIP_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal VBI_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal PVB1_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal PVB2_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal VBB_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal PW1_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal PW2_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal PW3_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal PW4_i_j_k : slv (CELL_WIDTH-1 downto 0);
signal T_i_j_k : slv (CELL_WIDTH-1 downto 0);
-----------------------------------------------------------------------------
-- Output signals
-----------------------------------------------------------------------------
signal PVI1_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal PVI2_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal VBIP_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal VBI_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal PVB1_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal PVB2_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal VBB_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal PW1_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal PW2_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal PW3_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal PW4_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
signal T_i_j_k_reg : slv (CELL_WIDTH-1 downto 0);
begin
-----------------------------------------------------------------------------
-- Delay control pipeline communication links according to the schedule
-----------------------------------------------------------------------------
-- in_k2_eq_j_m_i(i+2, j, k-1) -- to initialize pipelines PW1, PW2
int_k2_eq_j_m_i(0) <= in_k2_eq_j_m_i;
delay_k2_eq_j_m_i : delay_pipe
generic map (
DATA_WIDTH => 1,
DELAY_STATES => 2, -- delay = 3
NEEDS_RESET => NEEDS_RESET,
RESET_VAL_HIGH => false
)
port map (
clk => clk,
reset => reset,
din => int_k2_eq_j_m_i,
dout => in_k2_eq_j_m_i_link
);
-- in_k_eq_j_m_i_div_2(i+2, j, k-1) -- to start aggregation at k = (j-i)/2
int_k_eq_j_m_i_div_2(0) <= in_k_eq_j_m_i_div_2;
delay_k_eq_j_m_i_div_2 : delay_pipe
generic map (
DATA_WIDTH => 1,
DELAY_STATES => 2, -- delay = 3
NEEDS_RESET => NEEDS_RESET,
RESET_VAL_HIGH => false
)
port map (
clk => clk,
reset => reset,
din => int_k_eq_j_m_i_div_2,
dout => in_k_eq_j_m_i_div_2_link
);
-- in_k_eq_j_m_i_m_2(i+1, j, k-1) -- to start aggregation at k = j-i-2
-- delay by 1 clock cycle. 1 clock cycle when output is registered at
-- source, so no need to register anymore
in_k_eq_j_m_i_m_2_link(0) <= in_k_eq_j_m_i_m_2;
-----------------------------------------------------------------------------
-- Delay communication links according to the schedule
-----------------------------------------------------------------------------
-- PVI2(i+1, j, k-1): delay by 1 clock cycle. 1 clock cycle when output is
-- registered at source, so no need to register anymore
in_PVI2_ip1_j_km1_link <= in_PVI2_ip1_j_km1;
-- VBI(i, j, k+1): delay by 1 clock cycle. 1 clock cycle when output is
-- registered at source, so no need to register anymore
in_VBI_i_j_kp1_link <= in_VBI_i_j_kp1;
-- PVB2(i+1, j, k-1): delay by 1 clock cycle. 1 clock cycle when output is
-- registered at source, so no need to register anymore
in_PVB2_ip1_j_km1_link <= in_PVB2_ip1_j_km1;
-- T(i, j, k+1): delay by 1 clock cycle. 1 clock cycle when output is
-- registered at source, so no need to register anymore
in_T_i_j_kp1_link <= in_T_i_j_kp1;
-- PW2(i+1, j, k-1): delay by 1 clock cycle. 1 clock cycle when output is
-- registered at source, so no need to register anymore
in_PW2_ip1_j_km1_link <= in_PW2_ip1_j_km1;
-- PW4(i+1, j, k): delay by 2 clock cycles
delay_PW4_ip1_j_k : delay_pipe
generic map (
DATA_WIDTH => CELL_WIDTH,
DELAY_STATES => 1, -- delay = 2
NEEDS_RESET => NEEDS_RESET,
RESET_VAL_HIGH => false
)
port map (
clk => clk,
reset => reset,
din => PW4_i_j_k_reg,
dout => in_PW4_ip1_j_k_link
);
-- VBB(i, j, k+1): delay by 1 clock cycle. 1 clock cycle when output is
-- registered at source, so no need to register anymore
in_VBB_i_j_kp1_link <= in_VBB_i_j_kp1;
-----------------------------------------------------------------------------
-- Generate memory intensive link delays using LUTS
-----------------------------------------------------------------------------
gen_delays_luts : if (not USE_BRAM) generate
-- PVI1(i, j-1, k-1): delay by N-1 clock cycles
delay_PVI1_i_jm1_km1 : delay_pipe
generic map (
DATA_WIDTH => CELL_WIDTH,
DELAY_STATES => SEQ_LEN-2, -- delay = SEQ_LEN-1
NEEDS_RESET => NEEDS_RESET,
RESET_VAL_HIGH => false
)
port map (
clk => clk,
reset => reset,
din => in_PVI1_i_jm1_km1,
dout => in_PVI1_i_jm1_km1_link
);
-- VBI'(i+1, j-1, k-2): delay by N clock cycles
delay_VBIP_ip1_jm1_km2 : delay_pipe
generic map (
DATA_WIDTH => CELL_WIDTH,
DELAY_STATES => SEQ_LEN-1, -- delay = SEQ_LEN
NEEDS_RESET => NEEDS_RESET,
RESET_VAL_HIGH => false
)
port map (
clk => clk,
reset => reset,
din => in_VBIP_ip1_jm1_km2,
dout => in_VBIP_ip1_jm1_km2_link
);
-- PVB1(i, j-1, k-1): delay by N-1 clock cycles
delay_PVB1_i_jm1_km1 : delay_pipe
generic map (
DATA_WIDTH => CELL_WIDTH,
DELAY_STATES => SEQ_LEN-2, -- delay = SEQ_LEN-1
NEEDS_RESET => NEEDS_RESET,
RESET_VAL_HIGH => false
)
port map (
clk => clk,
reset => reset,
din => in_PVB1_i_jm1_km1,
dout => in_PVB1_i_jm1_km1_link
);
-- PW1(i, j-1, k): delay by N clock cycles
delay_PW1_i_jm1_k : delay_pipe
generic map (
DATA_WIDTH => CELL_WIDTH,
DELAY_STATES => SEQ_LEN-1, -- delay = SEQ_LEN
NEEDS_RESET => NEEDS_RESET,
RESET_VAL_HIGH => false
)
port map (
clk => clk,
reset => reset,
din => PW1_i_j_k_reg,
dout => in_PW1_i_jm1_k_link
);
-- PW3(i, j-1, k-1): delay by N-1 clock cycles
delay_PW3_i_jm1_km1 : delay_pipe
generic map (
DATA_WIDTH => CELL_WIDTH,
DELAY_STATES => SEQ_LEN-2, -- delay = SEQ_LEN-1
NEEDS_RESET => NEEDS_RESET,
RESET_VAL_HIGH => false
)
port map (
clk => clk,
reset => reset,
din => in_PW3_i_jm1_km1,
dout => in_PW3_i_jm1_km1_link
);
end generate gen_delays_luts;
-----------------------------------------------------------------------------
-- Generate memory intensive link delays using block RAMs
-----------------------------------------------------------------------------
gen_delays_bram : if (USE_BRAM) generate
-- delay of SEQ_LEN should not exceed capacity of block ram which is
-- 1024.
assert (SEQ_LEN <= 1024/2) report
"pe_k_2 block ram has insufficient capacity" severity error;
---------------------------------------------------------------------------
-- PVI1(i, j-1, k-1): delay by N-1 clock cycles
---------------------------------------------------------------------------
-- input into delay block ram
delay_fifo_din1 <= "00" & in_PVI1_i_jm1_km1;
-- instantiates block ram
delay_link1 : delay_fifo
port map (
clk => clk,
srst => reset,
rd_en => delay_fifo_rd1(0),
dout => delay_fifo_dout1,
full => open,
wr_en => delay_wr(0),
din => delay_fifo_din1,
empty => open
);
-- delay element to read from fifo at correct time
fifo_rd1 : delay_pipe
generic map (
DATA_WIDTH => 1,
DELAY_STATES => SEQ_LEN-3-NO_RETIMING_REGS, -- delay = SEQ_LEN-1
NEEDS_RESET => true, -- 1 clock at output of PE
RESET_VAL_HIGH => false -- 1 clock latency to read the fifo and
) -- NO_RETIMING_REGS clocks to improve timing
port map (
clk => clk,
reset => reset,
din => delay_wr,
dout => delay_fifo_rd1
);
-- output from delay block ram is registered multiple clocks to help
-- improve timing using retiming.
reg_output_delay1 : process (clk)
begin
if rising_edge(clk) then
fifo_retiming1(1) <= delay_fifo_dout1;
for i in 2 to NO_RETIMING_REGS loop
fifo_retiming1(i) <= fifo_retiming1(i-1);
end loop;
end if;
end process reg_output_delay1;
-- output: data from this link goes into PE logic
-- PVI1(i, j-1, k-1): delay by N-1 clock cycles
in_PVI1_i_jm1_km1_link <= fifo_retiming1(NO_RETIMING_REGS)
(CELL_WIDTH-1 downto 0);
---------------------------------------------------------------------------
-- VBI'(i+1, j-1, k-2): delay by N clock cycles
---------------------------------------------------------------------------
-- input into delay block ram
delay_fifo_din2 <= "00" & in_VBIP_ip1_jm1_km2;
-- instantiates block ram
delay_link2 : delay_fifo
port map (
clk => clk,
srst => reset,
rd_en => delay_fifo_rd2(0),
dout => delay_fifo_dout2,
full => open,
wr_en => delay_wr(0),
din => delay_fifo_din2,
empty => open
);
-- delay element to read from fifo at correct time
fifo_rd2 : delay_pipe
generic map (
DATA_WIDTH => 1,
DELAY_STATES => SEQ_LEN-2-NO_RETIMING_REGS, -- delay = SEQ_LEN
NEEDS_RESET => true, -- 1 clock at output of PE
RESET_VAL_HIGH => false -- 1 clock latency to read the fifo and
) -- NO_RETIMING_REGS clocks to improve timing
port map (
clk => clk,
reset => reset,
din => delay_wr,
dout => delay_fifo_rd2
);
-- output from delay block ram is registered multiple clocks to help
-- improve timing using retiming.
reg_output_delay2 : process (clk)
begin
if rising_edge(clk) then
fifo_retiming2(1) <= delay_fifo_dout2;
for i in 2 to NO_RETIMING_REGS loop
fifo_retiming2(i) <= fifo_retiming2(i-1);
end loop;
end if;
end process reg_output_delay2;
-- output: data from this link goes into PE logic
in_VBIP_ip1_jm1_km2_link <= fifo_retiming2(NO_RETIMING_REGS)
(CELL_WIDTH-1 downto 0);
---------------------------------------------------------------------------
-- PVB1(i, j-1, k-1): delay by N-1 clock cycles
---------------------------------------------------------------------------
-- input into delay block ram
delay_fifo_din3 <= "00" & in_PVB1_i_jm1_km1;
-- instantiates block ram
delay_link3 : delay_fifo
port map (
clk => clk,
srst => reset,
rd_en => delay_fifo_rd3(0),
dout => delay_fifo_dout3,
full => open,
wr_en => delay_wr(0),
din => delay_fifo_din3,
empty => open
);
-- delay element to read from fifo at correct time
fifo_rd3 : delay_pipe
generic map (
DATA_WIDTH => 1,
DELAY_STATES => SEQ_LEN-3-NO_RETIMING_REGS, -- delay = SEQ_LEN-1
NEEDS_RESET => true, -- 1 clock at output of PE
RESET_VAL_HIGH => false -- 1 clock latency to read the fifo and
) -- NO_RETIMING_REGS clocks to improve timing
port map (
clk => clk,
reset => reset,
din => delay_wr,
dout => delay_fifo_rd3
);
-- output from delay block ram is registered multiple clocks to help
-- improve timing using retiming.
reg_output_delay3 : process (clk)
begin
if rising_edge(clk) then
fifo_retiming3(1) <= delay_fifo_dout3;
for i in 2 to NO_RETIMING_REGS loop
fifo_retiming3(i) <= fifo_retiming3(i-1);
end loop;
end if;
end process reg_output_delay3;
-- output: data from this link goes into PE logic
in_PVB1_i_jm1_km1_link <= fifo_retiming3(NO_RETIMING_REGS)
(CELL_WIDTH-1 downto 0);
---------------------------------------------------------------------------
-- PW1(i, j-1, k): delay by N clock cycles
---------------------------------------------------------------------------
-- input into delay block ram
delay_fifo_din4 <= "00" & PW1_i_j_k_reg;
-- instantiates block ram
delay_link4 : delay_fifo
port map (
clk => clk,
srst => reset,
rd_en => delay_fifo_rd4(0),
dout => delay_fifo_dout4,
full => open,
wr_en => delay_wr(0),
din => delay_fifo_din4,
empty => open
);
-- delay element to read from fifo at correct time
fifo_rd4 : delay_pipe
generic map (
DATA_WIDTH => 1,
DELAY_STATES => SEQ_LEN-2-NO_RETIMING_REGS, -- delay = SEQ_LEN
NEEDS_RESET => true, -- 1 clock at output of PE
RESET_VAL_HIGH => false -- 1 clock latency to read the fifo and
) -- NO_RETIMING_REGS clocks to improve timing
port map (
clk => clk,
reset => reset,
din => delay_wr,
dout => delay_fifo_rd4
);
-- output from delay block ram is registered multiple clocks to help
-- improve timing using retiming.
reg_output_delay4 : process (clk)
begin
if rising_edge(clk) then
fifo_retiming4(1) <= delay_fifo_dout4;
for i in 2 to NO_RETIMING_REGS loop
fifo_retiming4(i) <= fifo_retiming4(i-1);
end loop;
end if;
end process reg_output_delay4;
-- output: data from this link goes into PE logic
in_PW1_i_jm1_k_link <= fifo_retiming4(NO_RETIMING_REGS)
(CELL_WIDTH-1 downto 0);
---------------------------------------------------------------------------
-- PW3(i, j-1, k-1): delay by N-1 clock cycles
---------------------------------------------------------------------------
-- input into delay block ram
delay_fifo_din5 <= "00" & in_PW3_i_jm1_km1;
-- instantiates block ram
delay_link5 : delay_fifo
port map (
clk => clk,
srst => reset,
rd_en => delay_fifo_rd5(0),
dout => delay_fifo_dout5,
full => open,
wr_en => delay_wr(0),
din => delay_fifo_din5,
empty => open
);
-- delay element to read from fifo at correct time
fifo_rd5 : delay_pipe
generic map (
DATA_WIDTH => 1,
DELAY_STATES => SEQ_LEN-3-NO_RETIMING_REGS, -- delay = SEQ_LEN-1
NEEDS_RESET => true, -- 1 clock at output of PE
RESET_VAL_HIGH => false -- 1 clock latency to read the fifo and
) -- NO_RETIMING_REGS clocks to improve timing
port map (
clk => clk,
reset => reset,
din => delay_wr,
dout => delay_fifo_rd5
);
-- output from delay block ram is registered multiple clocks to help
-- improve timing using retiming.
reg_output_delay5 : process (clk)
begin
if rising_edge(clk) then
fifo_retiming5(1) <= delay_fifo_dout5;
for i in 2 to NO_RETIMING_REGS loop
fifo_retiming5(i) <= fifo_retiming5(i-1);
end loop;
end if;
end process reg_output_delay5;
-- output: data from this link goes into PE logic
in_PW3_i_jm1_km1_link <= fifo_retiming5(NO_RETIMING_REGS)
(CELL_WIDTH-1 downto 0);
---------------------------------------------------------------------------
-- delay element to write to fifos a few clocks after reset is asserted
---------------------------------------------------------------------------
delay_fifo_wr : delay_pipe
generic map (
DATA_WIDTH => 1,
DELAY_STATES => 5, -- delay = 5 clocks
NEEDS_RESET => true, -- wait for a few clocks so that block
RESET_VAL_HIGH => false -- ram has a chance to settle
)
port map (
clk => clk,
reset => reset,
din => wr_start,
dout => delay_wr
);
-- registers to control reading and writing into block ram
reg_write_fifos : process (clk)
begin
if rising_edge(clk) then
if reset = '1' then
wr_start <= (others => '0');
else
-- keep writing into block ram based delay register
wr_start(0) <= '1';
end if;
end if; -- end rising_edge
end process reg_write_fifos;
end generate gen_delays_bram;
-----------------------------------------------------------------------------
-- Pipeline variable PVI1
-----------------------------------------------------------------------------
variable_pvi1 : pvi_kgt1
port map (
PVI_in => in_PVI1_i_jm1_km1_link,
PVI => PVI1_i_j_k
);
-----------------------------------------------------------------------------
-- Pipeline variable PVI2
-----------------------------------------------------------------------------
variable_pvi2 : pvi_kgt1
port map (
PVI_in => in_PVI2_ip1_j_km1_link,
PVI => PVI2_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable VBI'
-----------------------------------------------------------------------------
variable_vbip : vbip_kge3
generic map (
K => K
)
port map (
VBIP_in => in_VBIP_ip1_jm1_km2_link,
PVI1 => PVI1_i_j_k,
PVI2 => PVI2_i_j_k,
VBIP => VBIP_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable VBI
-----------------------------------------------------------------------------
variable_vbi : vbi_keq3to4
port map (
VBI_in => in_VBI_i_j_kp1_link,
k_eq_j_m_i_m_2 => in_k_eq_j_m_i_m_2_link(0),
VBI => VBI_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable PVB1
-----------------------------------------------------------------------------
variable_pvb1 : pvb_kgt1
port map (
PVB_in => in_PVB1_i_jm1_km1_link,
PVB => PVB1_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable PVB2
-----------------------------------------------------------------------------
variable_pvb2 : pvb_kgt1
port map (
PVB_in => in_PVB2_ip1_j_km1_link,
PVB => PVB2_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable VBB
-----------------------------------------------------------------------------
variable_vbb : vbb_kgt1
generic map (
K => K
)
port map (
VBB_in => in_VBB_i_j_kp1_link,
PVB1 => PVB1_i_j_k,
PVB2 => PVB2_i_j_k,
k_eq_j_m_i_m_2 => in_k_eq_j_m_i_m_2_link(0),
VBB => VBB_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable PW1
-----------------------------------------------------------------------------
variable_pw1 : pw1
port map (
PW1_in => in_PW1_i_jm1_k_link,
PW3 => PW3_i_j_k,
k2_eq_j_m_i => in_k2_eq_j_m_i_link(0),
PW1 => PW1_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable PW2
-----------------------------------------------------------------------------
variable_pw2 : pw2_kgt1
port map (
PW2_in => in_PW2_ip1_j_km1_link,
PW2 => PW2_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable PW3
-----------------------------------------------------------------------------
variable_pw3 : pw3_kgt1
port map (
PW3_in => in_PW3_i_jm1_km1_link,
PW3 => PW3_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable PW4
-----------------------------------------------------------------------------
variable_pw4 : pw4
port map (
PW4_in => in_PW4_ip1_j_k_link,
PW2 => PW2_i_j_k,
k2_eq_j_m_i => in_k2_eq_j_m_i_link(0),
PW4 => PW4_i_j_k
);
-----------------------------------------------------------------------------
-- Data variable T
-----------------------------------------------------------------------------
variable_t : t
port map (
T_in => in_T_i_j_kp1_link,
PW1 => PW1_i_j_k,
PW2 => PW2_i_j_k,
PW3 => PW3_i_j_k,
PW4 => PW4_i_j_k,
k_eq_j_m_i_div_2 => in_k_eq_j_m_i_div_2_link(0),
T => T_i_j_k
);
-----------------------------------------------------------------------------
-- Process to register computed values for data variables
-----------------------------------------------------------------------------
reg_values_noreset: process (clk)
begin
if rising_edge(clk) then
-- register computed values: output
PVI1_i_j_k_reg <= PVI1_i_j_k;
PVI2_i_j_k_reg <= PVI2_i_j_k;
VBIP_i_j_k_reg <= VBIP_i_j_k;
VBI_i_j_k_reg <= VBI_i_j_k;
PVB1_i_j_k_reg <= PVB1_i_j_k;
PVB2_i_j_k_reg <= PVB2_i_j_k;
VBB_i_j_k_reg <= VBB_i_j_k;
PW1_i_j_k_reg <= PW1_i_j_k;
PW2_i_j_k_reg <= PW2_i_j_k;
PW3_i_j_k_reg <= PW3_i_j_k;
PW4_i_j_k_reg <= PW4_i_j_k;
T_i_j_k_reg <= T_i_j_k;
end if; -- end rising_edge
end process reg_values_noreset;
reg_values: process (clk)
begin
if rising_edge(clk) then
if reset = '1' then
-- register control signals
out_k_eq_j_m_i_m_2 <= '0';
out_k_eq_j_m_i_div_2 <= '0';
out_k2_eq_j_m_i <= '0';
else
-- register control signals
out_k_eq_j_m_i_m_2 <= in_k_eq_j_m_i_m_2_link(0);
out_k_eq_j_m_i_div_2 <= in_k_eq_j_m_i_div_2_link(0);
out_k2_eq_j_m_i <= in_k2_eq_j_m_i_link(0);
end if;
end if; -- end rising_edge
end process reg_values;
out_PVI1_i_j_k <= PVI1_i_j_k_reg;
out_PVI2_i_j_k <= PVI2_i_j_k_reg;
out_VBIP_i_j_k <= VBIP_i_j_k_reg;
out_VBI_i_j_k <= VBI_i_j_k_reg;
out_PVB1_i_j_k <= PVB1_i_j_k_reg;
out_PVB2_i_j_k <= PVB2_i_j_k_reg;
out_VBB_i_j_k <= VBB_i_j_k_reg;
out_PW1_i_j_k <= PW1_i_j_k_reg;
out_PW2_i_j_k <= PW2_i_j_k_reg;
out_PW3_i_j_k <= PW3_i_j_k_reg;
out_PW4_i_j_k <= PW4_i_j_k_reg;