-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_cnn.py
190 lines (148 loc) · 6.05 KB
/
model_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import os, random, math
import matplotlib.pyplot as plt
from dataclasses import dataclass
import json
from tqdm.auto import tqdm
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchsummary import summary
import albumentations as A
from albumentations.pytorch import ToTensorV2
from data_utils import Validate, CONSTS, UnNormalize, IsaidDataset, load_metadata, to_device
from models import unet_model
from loss import CombinedLoss
# https://www.kaggle.com/code/vikram12301/multiclass-semantic-segmentation-pytorch/notebook
@dataclass
class TrainingConfig:
num_epochs = 40
LEARNING_RATE = 1e-3
scaler = torch.cuda.amp.GradScaler()
accumulation_steps = 8
training_batch_size = 16
config = TrainingConfig()
def plot_random_selections(training_dataset, unorm):
random_images = random.sample(range(1,len(training_dataset)), 12)
fig = plt.figure(constrained_layout=True, figsize=(10,15))
subfigs = fig.subfigures(6,2)
for i, subfig in zip(random_images, subfigs.flat):
axs = subfig.subplots(1,2)
image, mask = training_dataset[i].transformed_image, training_dataset[i].transformed_segmentation_map
axs[0].imshow(unorm(image).permute(1,2,0))
axs[1].imshow(unorm(image).permute(1,2,0))
axs[1].imshow(mask, cmap="nipy_spectral", alpha=0.8)
axs[0].set_title("Input Image")
axs[1].set_title("Segmentation Map ")
axs[0].set_xticks([])
axs[0].set_yticks([])
axs[1].set_xticks([])
axs[1].set_yticks([])
def train(num_epochs, model, optimizer, loss_fn, train_dataloader, validation_dataloader, scaler, accumulation_steps):
hist = []
train_loss = []
for epoch in range(num_epochs):
model.train()
# global progress_bar
progress_bar = tqdm(
total=len(train_dataloader),
# position=0,
# leave=True
)
progress_bar.set_description(f"E {epoch}")
batch_loss = []
for batch_idx, batch in enumerate(train_dataloader):
# data , targets = batch
data = to_device(batch['pixel_values'], CONSTS.DEVICE)
targets = to_device(batch['augmented_pixel_mask'], CONSTS.DEVICE)
targets = targets.type(torch.long)
# forward
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
predictions = model(data)
loss = loss_fn(predictions, targets)
loss = loss / accumulation_steps
scaler.scale(loss).backward()
# backward
if (batch_idx+1) % accumulation_steps == 0:
# in order to clip grad normalization one has to also unscale the gradients
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(model.parameters(), 3)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
with torch.no_grad():
progress_bar.update(1)
loss = accumulation_steps * loss.item()
batch_loss.append(loss)
logs = {"loss": loss}
progress_bar.set_postfix(**logs)
train_loss.append(sum(batch_loss) / len(batch_loss))
progress_bar.set_postfix({"t loss":train_loss[epoch],
"validating":"..."
})
torch.cuda.empty_cache()
model.eval()
valid_res = Validate.validate_cnn(validation_dataloader, model, loss_fn)
logs = {"train loss": train_loss[epoch], **valid_res}
hist.append(logs)
progress_bar.set_postfix(logs)
return hist
def collate_fn(batch) -> dict:
original_images = [sample.original_image for sample in batch]
transformed_images = torch.stack([sample.transformed_image for sample in batch])
transformed_segmentation_maps = torch.stack([
sample.transformed_segmentation_map for sample in batch
])
preprocessed_batch = {
"pixel_values": transformed_images,
"augmented_pixel_mask" : transformed_segmentation_maps,
"original_images" :original_images,
}
return preprocessed_batch
def load_model() -> list:
model = unet_model().to(CONSTS.DEVICE)
print(summary(model, ( 3, 512, 512), device=str(CONSTS.DEVICE)))
optimizer = optim.Adam(model.parameters(), lr=config.LEARNING_RATE)
return model,optimizer
def load_datasets():
training_metadata = load_metadata(f"{CONSTS.DS_DIR}/Train/Annotations/iSAID_train.json")
validation_metadata = load_metadata(f"{CONSTS.DS_DIR}/Validation/Annotations/iSAID_val.json")
training_dataset = IsaidDataset(training_metadata, f"{CONSTS.DS_DIR}/Train", transforms=CONSTS.transforms)
validation_dataset = IsaidDataset(validation_metadata, f"{CONSTS.DS_DIR}/Validation", transforms=CONSTS.transforms)
return training_dataset, validation_dataset
def prepare_data(dataset, batch_size):
return DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
collate_fn=collate_fn
)
def main():
# unorm = UnNormalize(
# mean = (0.485, 0.456, 0.406),
# std = (0.229, 0.224, 0.225)
# )
training_dataset, validation_dataset = load_datasets()
train_dataloader=prepare_data(training_dataset, config.training_batch_size)
validation_dataloader = prepare_data(validation_dataset, config.training_batch_size *2)
loss_fn = CombinedLoss()
model, optimizer = load_model()
hist = train(
config.num_epochs,
model,
optimizer,
loss_fn,
train_dataloader,
validation_dataloader,
config.scaler,
config.accumulation_steps
)
torch.save({"hist":hist, "state_dict": model.state_dict()}, "model_cnn_v3.pt")
if __name__ == "__main__":
main()