-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
68 lines (63 loc) · 2.74 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import torch.nn as nn
class encoding_block(nn.Module):
def __init__(self,in_channels, out_channels):
super().__init__()
model = []
model.append(nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False))
model.append(nn.BatchNorm2d(out_channels))
model.append(nn.ReLU(inplace=True))
model.append(nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False))
model.append(nn.BatchNorm2d(out_channels))
model.append(nn.ReLU(inplace=True))
self.conv = nn.Sequential(*model)
def forward(self, x):
return self.conv(x)
class unet_model(nn.Module):
def __init__(self,out_channels=16,features=[64, 256, 512, 512]):
super().__init__()
self.pool = nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))
self.conv1 = encoding_block(3,features[0])
self.conv2 = encoding_block(features[0],features[1])
self.conv3 = encoding_block(features[1],features[2])
self.conv4 = encoding_block(features[2],features[3])
self.conv5 = encoding_block(features[3]*2,features[3])
self.conv6 = encoding_block(features[3]*2,features[2])
self.conv7 = encoding_block(features[2],features[1])
self.conv8 = encoding_block(features[0]*2,features[0])
self.tconv1 = nn.ConvTranspose2d(features[-1]*2, features[-1], kernel_size=2, stride=2)
self.tconv2 = nn.ConvTranspose2d(features[-1], features[-2], kernel_size=2, stride=2)
self.tconv3 = nn.ConvTranspose2d(features[-2], features[-3], kernel_size=2, stride=2)
self.tconv4 = nn.ConvTranspose2d(features[-3], features[-4], kernel_size=2, stride=2)
self.bottleneck = encoding_block(features[3],features[3]*2)
self.final_layer = nn.Conv2d(features[0],out_channels,kernel_size=1)
def forward(self,x):
skip_connections = []
x = self.conv1(x)
skip_connections.append(x)
x = self.pool(x)
x = self.conv2(x)
skip_connections.append(x)
x = self.pool(x)
x = self.conv3(x)
skip_connections.append(x)
x = self.pool(x)
x = self.conv4(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1]
x = self.tconv1(x)
x = torch.cat((skip_connections[0], x), dim=1)
x = self.conv5(x)
x = self.tconv2(x)
x = torch.cat((skip_connections[1], x), dim=1)
x = self.conv6(x)
x = self.tconv3(x)
x = torch.cat((skip_connections[2], x), dim=1)
x = self.conv7(x)
x = self.tconv4(x)
x = torch.cat((skip_connections[3], x), dim=1)
x = self.conv8(x)
x = self.final_layer(x)
return x