Skip to content

Commit aaf0afa

Browse files
Merge pull request #13 from endolith/cleanup
Replace numbered list with headings, restore two missing images
2 parents 18a3912 + 422647b commit aaf0afa

File tree

1 file changed

+91
-64
lines changed

1 file changed

+91
-64
lines changed

README.md

Lines changed: 91 additions & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,14 @@
1-
## Tools to Design or Visualize Architecture of Neural Network
1+
# Tools to Design or Visualize Architecture of Neural Network
22

3-
1. [**Net2Vis**](https://viscom.net2vis.uni-ulm.de/OG1Br2BAkYSwwrV6CADl4X5EfErFjUzvuUwXWDdLbdsIXNhb9L): Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.
3+
## [Net2Vis](https://viscom.net2vis.uni-ulm.de/OG1Br2BAkYSwwrV6CADl4X5EfErFjUzvuUwXWDdLbdsIXNhb9L)
44

5-
![](https://storage.googleapis.com/groundai-web-prod/media/users/user_299833/project_401171/images/application.png)
5+
Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.
66

7-
2. [**visualkeras**](https://github.com/paulgavrikov/visualkeras/) : Visualkeras is a Python package to help visualize Keras (either standalone or included in tensorflow) neural network architectures. It allows easy styling to fit most needs. As of now it supports layered style architecture generation which is great for CNNs (Convolutional Neural Networks) and a grap style architecture.
7+
![](https://viscom.publications.uni-ulm.de/api/uploads/4/baeuerle19net2vis-teaser-application.png)
8+
9+
## [visualkeras](https://github.com/paulgavrikov/visualkeras/)
10+
11+
Visualkeras is a Python package to help visualize Keras (either standalone or included in tensorflow) neural network architectures. It allows easy styling to fit most needs. As of now it supports layered style architecture generation which is great for CNNs (Convolutional Neural Networks) and a grap style architecture.
812

913
```python
1014
import visualkeras
@@ -18,47 +22,57 @@ visualkeras.layered_view(model, to_file='output.png').show() # write and show
1822
visualkeras.layered_view(model)
1923
```
2024

21-
![](https://github.com/paulgavrikov/visualkeras/raw/master/figures/vgg16.png)
25+
![Visualization of the VGG16 neural network with stacked layers of decreasing size.](https://github.com/paulgavrikov/visualkeras/raw/master/figures/vgg16.png)
2226

23-
3. [**draw_convnet**](https://github.com/gwding/draw_convnet) : Python script for illustrating Convolutional Neural Network (ConvNet)
27+
## [draw_convnet](https://github.com/gwding/draw_convnet)
2428

25-
![img](https://raw.githubusercontent.com/gwding/draw_convnet/master/convnet_fig.png)
29+
Python script for illustrating Convolutional Neural Network (ConvNet)
2630

27-
4. [**NNSVG**](http://alexlenail.me/NN-SVG/LeNet.html)
31+
![img](https://raw.githubusercontent.com/gwding/draw_convnet/master/convnet_fig.png)
2832

29-
![AlexNet style](https://i.stack.imgur.com/Q0xOe.png)
33+
## [NNSVG](http://alexlenail.me/NN-SVG/LeNet.html)
3034

31-
![enter image description here](https://i.stack.imgur.com/K9lmg.png)
35+
![AlexNet style](https://i.stack.imgur.com/Q0xOe.png)
3236

33-
![enter image description here](https://i.stack.imgur.com/DlJ8J.png)
37+
![enter image description here](https://i.stack.imgur.com/K9lmg.png)
3438

35-
5. **[PlotNeuralNet](https://github.com/HarisIqbal88/PlotNeuralNet)** : Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, lets consolidate any improvements that you make and fix any bugs to help more people with this code.
39+
![enter image description here](https://i.stack.imgur.com/DlJ8J.png)
3640

37-
![img](https://user-images.githubusercontent.com/17570785/50308846-c2231880-049c-11e9-8763-3daa1024de78.png)
41+
## [PlotNeuralNet](https://github.com/HarisIqbal88/PlotNeuralNet)
3842

39-
![img](https://user-images.githubusercontent.com/17570785/50308873-e2eb6e00-049c-11e9-9587-9da6bdec011b.png)
43+
Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, lets consolidate any improvements that you make and fix any bugs to help more people with this code.
4044

41-
6. **[Tensorboard](https://www.tensorflow.org/tensorboard/graphs)** - TensorBoard’s **Graphs dashboard** is a powerful tool for examining your TensorFlow model.
45+
![img](https://user-images.githubusercontent.com/17570785/50308846-c2231880-049c-11e9-8763-3daa1024de78.png)
4246

43-
![enter image description here](https://i.stack.imgur.com/zJHpV.png)
47+
![img](https://user-images.githubusercontent.com/17570785/50308873-e2eb6e00-049c-11e9-9587-9da6bdec011b.png)
4448

45-
7. **[Caffe](https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py)** - In Caffe you can use [caffe/draw.py](https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py) to draw the NetParameter protobuffer:
49+
## [Tensorboard](https://www.tensorflow.org/tensorboard/graphs)
4650

47-
![enter image description here](https://i.stack.imgur.com/5Z1Cb.png)
51+
TensorBoard’s **Graphs dashboard** is a powerful tool for examining your TensorFlow model.
4852

49-
8. **[Matlab](http://www.mathworks.com/help/nnet/ref/view.html)**
53+
![enter image description here](https://i.stack.imgur.com/zJHpV.png)
5054

51-
![enter image description here](https://i.stack.imgur.com/rPpfa.png)
55+
## [Caffe](https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py)
5256

53-
9. [**Keras.js**](https://transcranial.github.io/keras-js/#/inception-v3)
57+
In Caffe you can use [caffe/draw.py](https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py) to draw the NetParameter protobuffer:
5458

55-
![enter image description here](https://i.stack.imgur.com/vEfTv.png)
59+
![enter image description here](https://i.stack.imgur.com/5Z1Cb.png)
5660

57-
9. **[keras-sequential-ascii](https://github.com/stared/keras-sequential-ascii/)** - A library for [Keras](https://keras.io/) for investigating architectures and parameters of sequential models.
61+
## [Matlab](http://www.mathworks.com/help/nnet/ref/view.html)
5862

59-
**VGG 16 Architecture**
63+
![enter image description here](https://i.stack.imgur.com/rPpfa.png)
6064

61-
```
65+
## [Keras.js](https://transcranial.github.io/keras-js/#/inception-v3)
66+
67+
![enter image description here](https://i.stack.imgur.com/vEfTv.png)
68+
69+
## [keras-sequential-ascii](https://github.com/stared/keras-sequential-ascii/)
70+
71+
A library for [Keras](https://keras.io/) for investigating architectures and parameters of sequential models.
72+
73+
### VGG 16 Architecture
74+
75+
```text
6276
OPERATION DATA DIMENSIONS WEIGHTS(N) WEIGHTS(%)
6377
6478
Input ##### 3 224 224
@@ -110,77 +124,90 @@ visualkeras.layered_view(model)
110124
softmax ##### 1000
111125
```
112126

113-
10. **[ Netron ](https://github.com/lutzroeder/Netron)**
127+
## [Netron](https://github.com/lutzroeder/Netron)
114128

115-
![screenshot.png](https://github.com/lutzroeder/netron/raw/main/.github/screenshot.png)
129+
![screenshot.png](https://github.com/lutzroeder/netron/raw/main/.github/screenshot.png)
116130

117-
11. **[DotNet](https://github.com/martisak/dotnets)**
131+
## [DotNet](https://github.com/martisak/dotnets)
118132

119-
![Simple net](https://github.com/martisak/dotnets/raw/master/test.png)
133+
![Simple net](https://github.com/martisak/dotnets/raw/master/test.png)
120134

121-
12. [**Graphviz**](http://www.graphviz.org/) : **[Tutorial](https://tgmstat.wordpress.com/2013/06/12/draw-neural-network-diagrams-graphviz/)**
135+
## [Graphviz](http://www.graphviz.org/)
122136

123-
![img](https://tgmstat.files.wordpress.com/2013/05/multiclass_neural_network_example.png)
137+
**[Tutorial](https://tgmstat.wordpress.com/2013/06/12/draw-neural-network-diagrams-graphviz/)**
124138

125-
13. **[Keras Visualization](https://keras.io/visualization/)** - The [keras.utils.vis_utils module](https://keras.io/visualization/) provides utility functions to plot a Keras model (using graphviz)
139+
![img](https://tgmstat.files.wordpress.com/2013/05/multiclass_neural_network_example.png)
126140

127-
![enter image description here](https://i.stack.imgur.com/o17GY.png)
141+
## [Keras Visualization](https://keras.io/visualization/)
128142

129-
14. **[Conx](https://conx.readthedocs.io/en/latest/index.html)** - The Python package `conx` can visualize networks with activations with the function `net.picture()` to produce SVG, PNG, or PIL Images like this:
143+
The [keras.utils.vis_utils module](https://keras.io/visualization/) provides utility functions to plot a Keras model (using graphviz)
130144

131-
![enter image description here](https://i.stack.imgur.com/nhHjO.png)
145+
![enter image description here](https://i.stack.imgur.com/o17GY.png)
132146

133-
15. **[ENNUI](https://math.mit.edu/ennui/)** - Working on a drag-and-drop neural network visualizer (and more). Here's an example of a visualization for a LeNet-like architecture.
147+
## [Conx](https://conx.readthedocs.io/en/latest/index.html)
134148

135-
![A visualization of a LeNet-like architecture](https://i.stack.imgur.com/pRLeG.png)
149+
The Python package `conx` can visualize networks with activations with the function `net.picture()` to produce SVG, PNG, or PIL Images like this:
136150

137-
16. **NNet - R Package** - **[Tutorial](https://beckmw.wordpress.com/2013/03/04/visualizing-neural-networks-from-the-nnet-package/)**
151+
![enter image description here](https://i.stack.imgur.com/nhHjO.png)
138152

139-
```
153+
## [ENNUI](https://math.mit.edu/ennui/)
154+
155+
Working on a drag-and-drop neural network visualizer (and more). Here's an example of a visualization for a LeNet-like architecture.
156+
157+
![A visualization of a LeNet-like architecture](https://i.stack.imgur.com/pRLeG.png)
158+
159+
## NNet - R Package
160+
161+
**[Tutorial](https://beckmw.wordpress.com/2013/03/04/visualizing-neural-networks-from-the-nnet-package/)**
162+
163+
```R
140164
data(infert, package="datasets")
141165
plot(neuralnet(case~parity+induced+spontaneous, infert))
142166
```
143167

144-
[![neuralnet](https://i.stack.imgur.com/yyftd.png)](https://
168+
![neuralnet](https://i.stack.imgur.com/yyftd.png)
145169

146-
17. **[GraphCore](https://www.graphcore.ai/posts/what-does-machine-learning-look-like)** - These approaches are more oriented towards visualizing neural network operation, however, NN architecture is also somewhat visible on the resulting diagrams.
170+
## [GraphCore](https://www.graphcore.ai/posts/what-does-machine-learning-look-like)
147171

148-
**AlexNet**
172+
These approaches are more oriented towards visualizing neural network operation, however, NN architecture is also somewhat visible on the resulting diagrams.
149173

150-
![alexnet_label logo.jpg](https://www.graphcore.ai/hubfs/images/alexnet_label%20logo.jpg)
174+
### AlexNet
151175

152-
**ResNet50**![resnet50_label_logo.jpg](https://www.graphcore.ai/hubfs/images/resnet50_label_logo.jpg)
176+
![alexnet_label logo.jpg](https://www.graphcore.ai/hubfs/images/alexnet_label%20logo.jpg)
153177

154-
18. [**Neataptic**](https://wagenaartje.github.io/neataptic/ )
178+
### ResNet50
155179

156-
Neataptic offers flexible neural networks; neurons and synapses can be removed with a single line of code. No fixed architecture is required for neural networks to function at all. This flexibility allows networks to be shaped for your dataset through neuro-evolution, which is done using multiple threads.
180+
![resnet50_label_logo.jpg](https://www.graphcore.ai/hubfs/images/resnet50_label_logo.jpg)
157181

158-
![img](https://camo.githubusercontent.com/4326c3f603b828b61fd63d927acca2cfc152773f/68747470733a2f2f692e6779617a6f2e636f6d2f66353636643233363461663433646433613738633839323665643230346135312e706e67)
182+
## [Neataptic](https://wagenaartje.github.io/neataptic/)
159183

160-
19. **[TensorSpace](https://tensorspace.org/)** : TensorSpace is a neural network 3D visualization framework built by TensorFlow.js, Three.js and Tween.js. TensorSpace provides Layer APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. By applying TensorSpace API, it is more intuitive to visualize and understand any pre-trained models built by TensorFlow, Keras, TensorFlow.js, etc.
184+
Neataptic offers flexible neural networks; neurons and synapses can be removed with a single line of code. No fixed architecture is required for neural networks to function at all. This flexibility allows networks to be shaped for your dataset through neuro-evolution, which is done using multiple threads.
161185

162-
**[Tutorial](https://www.freecodecamp.org/news/tensorspace-js-a-way-to-3d-visualize-neural-networks-in-browsers-2c0afd7648a8/)**
186+
![img](https://i.gyazo.com/f566d2364af43dd3a78c8926ed204a51.png)
163187

164-
![enter image description here](https://i.stack.imgur.com/ekF5v.png)
188+
## [TensorSpace](https://tensorspace.org/)
165189

166-
190+
TensorSpace is a neural network 3D visualization framework built by TensorFlow.js, Three.js and Tween.js. TensorSpace provides Layer APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. By applying TensorSpace API, it is more intuitive to visualize and understand any pre-trained models built by TensorFlow, Keras, TensorFlow.js, etc.
167191

168-
20. **[Netscope CNN Analyzer](http://dgschwend.github.io/netscope/quickstart.html)**
192+
**[Tutorial](https://www.freecodecamp.org/news/tensorspace-js-a-way-to-3d-visualize-neural-networks-in-browsers-2c0afd7648a8/)**
169193

170-
![enter image description here](https://i.stack.imgur.com/VVDsg.png)
194+
![enter image description here](https://i.stack.imgur.com/ekF5v.png)
171195

172-
21. **[Monial](https://github.com/mlajtos/moniel)**
196+
## [Netscope CNN Analyzer](http://dgschwend.github.io/netscope/quickstart.html)
173197

174-
Interactive Notation for Computational Graphs https://mlajtos.github.io/moniel/
198+
![enter image description here](https://i.stack.imgur.com/VVDsg.png)
175199

176-
![img](https://miro.medium.com/max/819/1*u6uIQF4xTVe-ylJnAPoIDg.png)
200+
## [Monial](https://github.com/mlajtos/moniel)
177201

178-
22. [**Texample**](http://www.texample.net/tikz/examples/neural-network/)
202+
Interactive Notation for Computational Graphs <https://mlajtos.github.io/moniel/>
179203

180-
![Neural Network](https://texample.net/media/tikz/examples/PNG/neural-network.png)
204+
![img](https://miro.medium.com/max/819/1*u6uIQF4xTVe-ylJnAPoIDg.png)
181205

206+
## [Texample](http://www.texample.net/tikz/examples/neural-network/)
182207

183-
```
208+
![Neural Network](https://texample.net/media/tikz/examples/PNG/neural-network.png)
209+
210+
```latex
184211
\documentclass{article}
185212
186213
\usepackage{tikz}
@@ -229,12 +256,12 @@ Neataptic offers flexible neural networks; neurons and synapses can be removed w
229256
\end{document}
230257
```
231258

232-
23. [**Quiver**](https://github.com/keplr-io/quiver)
259+
## [Quiver](https://github.com/keplr-io/quiver)
233260

234-
![gzqll3](https://cloud.githubusercontent.com/assets/5866348/20253975/f3d56f14-a9e4-11e6-9693-9873a18df5d3.gif)
261+
![gzqll3](https://cloud.githubusercontent.com/assets/5866348/20253975/f3d56f14-a9e4-11e6-9693-9873a18df5d3.gif)
235262

236-
**References :**
263+
**References:**
237264

238-
1) https://datascience.stackexchange.com/questions/12851/how-do-you-visualize-neural-network-architectures
265+
1) <https://datascience.stackexchange.com/questions/12851/how-do-you-visualize-neural-network-architectures>
239266

240-
2) https://datascience.stackexchange.com/questions/2670/visualizing-deep-neural-network-training
267+
2) <https://datascience.stackexchange.com/questions/2670/visualizing-deep-neural-network-training>

0 commit comments

Comments
 (0)