-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
337 lines (278 loc) · 10.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# -*- coding: utf-8 -*-
"""model.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1hl29owpwdq6xp14RtPEV9fpJ0ICN5pyN
"""
# Commented out IPython magic to ensure Python compatibility.
import numpy as np
from numpy import array
import matplotlib.pyplot as plt
# %matplotlib inline
import string
import os
import glob
from PIL import Image
from time import time
from keras import Input, layers
from keras import optimizers
from keras.optimizers import Adam
from keras.preprocessing import sequence
from keras.preprocessing import image
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import LSTM, Embedding, Dense, Activation, Flatten, Reshape, Dropout
from keras.layers.wrappers import Bidirectional
from keras.layers.merge import add
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_v3 import preprocess_input
from keras.models import Model
from keras.utils import to_categorical
token_path = "Flickr8k_text/Flickr8k.token.txt"
train_images_path = 'Flickr8k_text/Flickr_8k.trainImages.txt'
test_images_path = 'Flickr8k_text/Flickr_8k.testImages.txt'
images_path = 'Flickr8k_Dataset/'
glove_path = 'glove6b'
doc = open(token_path,'r').read()
print(doc[:410])
descriptions = dict()
for line in doc.split('\n'):
tokens = line.split()
if len(line) > 2:
image_id = tokens[0].split('.')[0]
image_desc = ' '.join(tokens[1:])
if image_id not in descriptions:
descriptions[image_id] = list()
descriptions[image_id].append(image_desc)
table = str.maketrans('', '', string.punctuation)
for key, desc_list in descriptions.items():
for i in range(len(desc_list)):
desc = desc_list[i]
desc = desc.split()
desc = [word.lower() for word in desc]
desc = [w.translate(table) for w in desc]
desc_list[i] = ' '.join(desc)
pic = '1000268201_693b08cb0e.jpg'
x=plt.imread(images_path+pic)
plt.imshow(x)
plt.show()
descriptions['1000268201_693b08cb0e']
vocabulary = set()
for key in descriptions.keys():
[vocabulary.update(d.split()) for d in descriptions[key]]
print('Original Vocabulary Size: %d' % len(vocabulary))
lines = list()
for key, desc_list in descriptions.items():
for desc in desc_list:
lines.append(key + ' ' + desc)
new_descriptions = '\n'.join(lines)
doc = open(train_images_path,'r').read()
dataset = list()
for line in doc.split('\n'):
if len(line) > 1:
identifier = line.split('.')[0]
dataset.append(identifier)
train = set(dataset)
img = glob.glob(images_path + '*.jpg')
train_images = set(open(train_images_path, 'r').read().strip().split('\n'))
train_img = []
for i in img:
if i[len(images_path):] in train_images:
train_img.append(i)
test_images = set(open(test_images_path, 'r').read().strip().split('\n'))
test_img = []
for i in img:
if i[len(images_path):] in test_images:
test_img.append(i)
print(test_img[3])
train_descriptions = dict()
for line in new_descriptions.split('\n'):
tokens = line.split()
image_id, image_desc = tokens[0], tokens[1:]
if image_id in train:
if image_id not in train_descriptions:
train_descriptions[image_id] = list()
desc = 'startseq ' + ' '.join(image_desc) + ' endseq'
train_descriptions[image_id].append(desc)
all_train_captions = []
for key, val in train_descriptions.items():
for cap in val:
all_train_captions.append(cap)
word_count_threshold = 10
word_counts = {}
nsents = 0
for sent in all_train_captions:
nsents += 1
for w in sent.split(' '):
word_counts[w] = word_counts.get(w, 0) + 1
vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold]
print('Vocabulary = %d' % (len(vocab)))
print(vocab)
ixtoword = {}
wordtoix = {}
ix = 1
for w in vocab:
wordtoix[w] = ix
ixtoword[ix] = w
ix += 1
vocab_size = len(ixtoword) + 1
all_desc = list()
for key in train_descriptions.keys():
[all_desc.append(d) for d in train_descriptions[key]]
lines = all_desc
max_length = max(len(d.split()) for d in lines)
print('Description Length: %d' % max_length)
embeddings_index = {}
f = open(os.path.join(glove_path, 'glove.6B.200d.txt'), encoding="utf-8")
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
embedding_dim = 200
embedding_matrix = np.zeros((vocab_size, embedding_dim))
for word, i in wordtoix.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
model = InceptionV3(weights='imagenet')
model_new = Model(model.input, model.layers[-2].output)
def preprocess(image_path):
img = image.load_img(image_path, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x
def encode(image):
image = preprocess(image)
fea_vec = model_new.predict(image)
fea_vec = np.reshape(fea_vec, fea_vec.shape[1])
return fea_vec
encoding_train = {}
for img in train_img:
encoding_train[img[len(images_path):]] = encode(img)
train_features = encoding_train
encoding_test = {}
for img in test_img:
encoding_test[img[len(images_path):]] = encode(img)
inputs1 = Input(shape=(2048,))
fe1 = Dropout(0.5)(inputs1)
fe2 = Dense(256, activation='relu')(fe1)
inputs2 = Input(shape=(max_length,))
se1 = Embedding(vocab_size, embedding_dim, mask_zero=True)(inputs2)
se2 = Dropout(0.5)(se1)
se3 = LSTM(256)(se2)
decoder1 = add([fe2, se3])
decoder2 = Dense(256, activation='relu')(decoder1)
outputs = Dense(vocab_size, activation='softmax')(decoder2)
model = Model(inputs=[inputs1, inputs2], outputs=outputs)
model.summary()
model.layers[2].set_weights([embedding_matrix])
model.layers[2].trainable = False
model.compile(loss='categorical_crossentropy', optimizer='adam')
def data_generator(descriptions, photos, wordtoix, max_length, num_photos_per_batch):
X1, X2, y = list(), list(), list()
n=0
# loop for ever over images
while 1:
for key, desc_list in descriptions.items():
n+=1
# retrieve the photo feature
photo = photos[key+'.jpg']
for desc in desc_list:
# encode the sequence
seq = [wordtoix[word] for word in desc.split(' ') if word in wordtoix]
# split one sequence into multiple X, y pairs
for i in range(1, len(seq)):
# split into input and output pair
in_seq, out_seq = seq[:i], seq[i]
# pad input sequence
in_seq = pad_sequences([in_seq], maxlen=max_length)[0]
# encode output sequence
out_seq = to_categorical([out_seq], num_classes=vocab_size)[0]
# store
X1.append(photo)
X2.append(in_seq)
y.append(out_seq)
if n==num_photos_per_batch:
yield ([array(X1), array(X2)], array(y))
X1, X2, y = list(), list(), list()
n=0
epochs = 25
batch_size = 3
steps = len(train_descriptions)//batch_size
generator = data_generator(train_descriptions, train_features, wordtoix, max_length, batch_size)
model.fit(generator, epochs=epochs, steps_per_epoch=steps, verbose=1)
def beam_search_predictions(image, beam_index = 3):
start = [wordtoix["startseq"]]
start_word = [[start, 0.0]]
while len(start_word[0][0]) < max_length:
temp = []
for s in start_word:
par_caps = sequence.pad_sequences([s[0]], maxlen=max_length, padding='post')
preds = model.predict([image,par_caps], verbose=0)
word_preds = np.argsort(preds[0])[-beam_index:]
# Getting the top <beam_index>(n) predictions and creating a
# new list so as to put them via the model again
for w in word_preds:
next_cap, prob = s[0][:], s[1]
next_cap.append(w)
prob += preds[0][w]
temp.append([next_cap, prob])
start_word = temp
# Sorting according to the probabilities
start_word = sorted(start_word, reverse=False, key=lambda l: l[1])
# Getting the top words
start_word = start_word[-beam_index:]
start_word = start_word[-1][0]
intermediate_caption = [ixtoword[i] for i in start_word]
final_caption = []
for i in intermediate_caption:
if i != 'endseq':
final_caption.append(i)
else:
break
final_caption = ' '.join(final_caption[1:])
return final_caption
pic = '2398605966_1d0c9e6a20.jpg'
image = encoding_test[pic].reshape((1,2048))
x=plt.imread(images_path+pic)
plt.imshow(x)
plt.show()
print(image)
print(image.shape)
print("Beam Search, K = 3:",beam_search_predictions(image, beam_index = 3))
model.save("model.h5")
print("Beam Search, K = 7:",beam_search_predictions(image, beam_index = 7))
pic = '2398605966_1d0c9e6a20.jpg'
#image = encoding_test[pic].reshape((1,2048))
x=plt.imread(pic)
plt.imshow(x)
plt.show()
img = image.load_img(pic, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
fea_vec = model_new.predict(x)
fea_vec = np.reshape(fea_vec, fea_vec.shape[1])
pic = list(encoding_test.keys())[1]
print(pic)
pic = 'test.jpg'
#image = encoding_test[pic].reshape((1,2048))
x=plt.imread(pic)
plt.imshow(x)
plt.show()
img = image.load_img(pic, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
fea_vec = model_new.predict(x)
fea_vec = np.reshape(fea_vec, fea_vec.shape[1])
res = fea_vec.reshape((1,2048))
print(res)
print(res.shape)
print("Beam Search, K = 3:",beam_search_predictions(res, beam_index = 3))
print("Beam Search, K = 5:",beam_search_predictions(res, beam_index = 5))
print("Beam Search, K = 7:",beam_search_predictions(res, beam_index = 7))
print("Beam Search, K = 10:",beam_search_predictions(res, beam_index = 10))
print("Beam Search, K = 20:",beam_search_predictions(res, beam_index = 20))