-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathelmo_tokenizer_utils.py
131 lines (108 loc) · 4.39 KB
/
elmo_tokenizer_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2019 The Texar Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utils of pre-trained ELMo tokenizer.
Code adapted from:
`https://github.com/allenai/allennlp/blob/master/allennlp/data/token_indexers/elmo_indexer.py`
"""
from typing import Dict, List, Optional
import torch
from torch.nn.utils.rnn import pad_sequence
__all__ = [
"ELMoCharacterMapper",
"batch_to_ids",
]
def _make_bos_eos(character: int,
padding_character: int,
beginning_of_word_character: int,
end_of_word_character: int,
max_word_length: int):
char_ids = [padding_character] * max_word_length
char_ids[0] = beginning_of_word_character
char_ids[1] = character
char_ids[2] = end_of_word_character
return char_ids
class ELMoCharacterMapper:
r"""Maps individual tokens to sequences of character ids, compatible with
ELMo. To be consistent with previously trained models, we include it here as
special of existing character indexers.
We allow to add optional additional special tokens with designated
character ids with `tokens_to_add`.
"""
max_word_length = 50
# char ids 0-255 come from utf-8 encoding bytes
# assign 256-300 to special chars
beginning_of_sentence_character = 256 # <begin sentence>
end_of_sentence_character = 257 # <end sentence>
beginning_of_word_character = 258 # <begin word>
end_of_word_character = 259 # <end word>
padding_character = 260 # <padding>
beginning_of_sentence_characters = _make_bos_eos(
beginning_of_sentence_character,
padding_character,
beginning_of_word_character,
end_of_word_character,
max_word_length,
)
end_of_sentence_characters = _make_bos_eos(
end_of_sentence_character,
padding_character,
beginning_of_word_character,
end_of_word_character,
max_word_length,
)
bos_token = "<S>"
eos_token = "</S>"
def __init__(self, tokens_to_add: Optional[Dict[str, int]] = None) -> None:
self.tokens_to_add = tokens_to_add or {}
def convert_word_to_char_ids(self, word: str) -> List[int]:
if word in self.tokens_to_add:
char_ids = [self.padding_character] * self.max_word_length
char_ids[0] = self.beginning_of_word_character
char_ids[1] = self.tokens_to_add[word]
char_ids[2] = self.end_of_word_character
elif word == self.bos_token:
char_ids = self.beginning_of_sentence_characters
elif word == self.eos_token:
char_ids = self.end_of_sentence_characters
else:
word_encoded = word.encode("utf-8", "ignore")[: (
self.max_word_length - 2)]
char_ids = [self.padding_character] * self.max_word_length
char_ids[0] = self.beginning_of_word_character
for k, chr_id in enumerate(word_encoded, start=1):
char_ids[k] = chr_id
char_ids[len(word_encoded) + 1] = self.end_of_word_character
# +1 one for masking
return [c + 1 for c in char_ids]
def __eq__(self, other) -> bool:
if isinstance(self, other.__class__):
return self.__dict__ == other.__dict__
return NotImplemented
def batch_to_ids(batch: List[List[str]]) -> torch.Tensor:
r"""Converts a batch of tokenized sentences to a tensor representing the
sentences with encoded characters (len(batch), max sentence length,
max word length).
Args:
batch: A list of tokenized sentences.
Returns:
A tensor of padded character ids.
"""
res = []
mapper = ELMoCharacterMapper()
for sentence in batch:
character_ids = [mapper.convert_word_to_char_ids(token)
for token in sentence]
res.append(torch.tensor(character_ids))
return pad_sequence(res, batch_first=True)