-
Notifications
You must be signed in to change notification settings - Fork 372
/
Copy pathseq2seq_attn.py
160 lines (125 loc) · 5.37 KB
/
seq2seq_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2018 The Texar Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Attentional Seq2seq.
"""
# pylint: disable=invalid-name, too-many-arguments, too-many-locals
import importlib
import tensorflow as tf
import texar.tf as tx
flags = tf.flags
flags.DEFINE_string("config_model", "config_model", "The model config.")
flags.DEFINE_string("config_data", "config_iwslt14", "The dataset config.")
FLAGS = flags.FLAGS
config_model = importlib.import_module(FLAGS.config_model)
config_data = importlib.import_module(FLAGS.config_data)
def build_model(batch, train_data):
"""Assembles the seq2seq model.
"""
source_embedder = tx.modules.WordEmbedder(
vocab_size=train_data.source_vocab.size, hparams=config_model.embedder)
encoder = tx.modules.BidirectionalRNNEncoder(
hparams=config_model.encoder)
enc_outputs, _ = encoder(source_embedder(batch['source_text_ids']))
target_embedder = tx.modules.WordEmbedder(
vocab_size=train_data.target_vocab.size, hparams=config_model.embedder)
decoder = tx.modules.AttentionRNNDecoder(
memory=tf.concat(enc_outputs, axis=2),
memory_sequence_length=batch['source_length'],
vocab_size=train_data.target_vocab.size,
hparams=config_model.decoder)
training_outputs, _, _ = decoder(
decoding_strategy='train_greedy',
inputs=target_embedder(batch['target_text_ids'][:, :-1]),
sequence_length=batch['target_length'] - 1)
mle_loss = tx.losses.sequence_sparse_softmax_cross_entropy(
labels=batch['target_text_ids'][:, 1:],
logits=training_outputs.logits,
sequence_length=batch['target_length'] - 1)
train_op = tx.core.get_train_op(mle_loss, hparams=config_model.opt)
start_tokens = tf.ones_like(batch['target_length']) * \
train_data.target_vocab.bos_token_id
beam_search_outputs, _, _ = \
tx.modules.beam_search_decode(
decoder_or_cell=decoder,
embedding=target_embedder,
start_tokens=start_tokens,
end_token=train_data.target_vocab.eos_token_id,
beam_width=config_model.beam_width,
max_decoding_length=60)
return train_op, beam_search_outputs
def main():
"""Entrypoint.
"""
train_data = tx.data.PairedTextData(hparams=config_data.train)
val_data = tx.data.PairedTextData(hparams=config_data.val)
test_data = tx.data.PairedTextData(hparams=config_data.test)
data_iterator = tx.data.TrainTestDataIterator(
train=train_data, val=val_data, test=test_data)
batch = data_iterator.get_next()
train_op, infer_outputs = build_model(batch, train_data)
def _train_epoch(sess):
data_iterator.switch_to_train_data(sess)
step = 0
while True:
try:
loss = sess.run(train_op)
if step % config_data.display == 0:
print("step={}, loss={:.4f}".format(step, loss))
step += 1
except tf.errors.OutOfRangeError:
break
def _eval_epoch(sess, mode):
if mode == 'val':
data_iterator.switch_to_val_data(sess)
else:
data_iterator.switch_to_test_data(sess)
refs, hypos = [], []
while True:
try:
fetches = [
batch['target_text'][:, 1:],
infer_outputs.predicted_ids[:, :, 0]
]
feed_dict = {
tx.global_mode(): tf.estimator.ModeKeys.EVAL
}
target_texts_ori, output_ids = \
sess.run(fetches, feed_dict=feed_dict)
target_texts = tx.utils.strip_special_tokens(
target_texts_ori, is_token_list=True)
output_texts = tx.utils.map_ids_to_strs(
ids=output_ids, vocab=val_data.target_vocab)
for hypo, ref in zip(output_texts, target_texts):
hypos.append(hypo)
refs.append([ref])
except tf.errors.OutOfRangeError:
break
return tx.evals.corpus_bleu_moses(list_of_references=refs,
hypotheses=hypos)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sess.run(tf.tables_initializer())
best_val_bleu = -1.
for i in range(config_data.num_epochs):
_train_epoch(sess)
val_bleu = _eval_epoch(sess, 'val')
best_val_bleu = max(best_val_bleu, val_bleu)
print('val epoch={}, BLEU={:.4f}; best-ever={:.4f}'.format(
i, val_bleu, best_val_bleu))
test_bleu = _eval_epoch(sess, 'test')
print('test epoch={}, BLEU={:.4f}'.format(i, test_bleu))
print('=' * 50)
if __name__ == '__main__':
main()