-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
605 lines (508 loc) · 21.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# @Author: Atul Sahay <atul>
# @Date: 2018-10-22T18:34:28+05:30
# @Email: [email protected]
# @Last modified by: atul
# @Last modified time: 2018-11-04T01:30:56+05:30
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import sys
import os
import math
HIDDEN_LAYERS = 2
HIDDEN_UNITS = 100
OUTPUT_UNITS = 3
BATCH_SIZE = 100
LAMBDA = 4
LEARNING_RATE = 0.1
EPOCHS = 1000
ACTIVATION_FUNCTIONS = ["sigmoid","tanh","relu","softplus"]
ACTIVATION = ACTIVATION_FUNCTIONS[0]
EPSILON = 0.000000000001
DROPOUT = 0
DECAY = False
PARTITION = 0.90
n_weights_count = 0
###########################################################################################################
#################### SETS METHODS FOR EXTRACTING FEATURES SET FROM THE DATA SET ##########################
###########################################################################################################
def to_map(data_set):
data_set = pd.concat([data_set,pd.get_dummies(data_set['post_day'], prefix='post_day')],axis=1)
# now drop the original
data_set.drop(['post_day'],axis=1, inplace=True)
data_set = pd.concat([data_set,pd.get_dummies(data_set['basetime_day'], prefix='basetime_day')],axis=1)
# now drop the original
data_set.drop(['basetime_day'],axis=1, inplace=True)
return data_set
# Feature scaling , here I have used min_max
def to_normalize(data_set):
global train_mean, train_std
train_mean = data_set.mean()
train_std = data_set.std()
data_set = (data_set - data_set.min())/(data_set.max() - data_set.min())
return data_set
# Split in x and y
def split(data):
data = data.sample(frac=1).reset_index(drop=True)
x_train = data.iloc[:,:-1]
y_train = data.iloc[:,-1]
# print(x_train)
# print(y_train)
# exit()
return x_train, y_train
# Provide features set and target set
def get_features(file_path):
# Given a file path , return feature matrix and target labels
data = pd.read_csv(file_path)
return split(data)
###########################################################################################################
#################### END OF FEATURE EXTRACTION ##########################
#########################################################################################################
################ For One Hot encoding of the values (OUTPUT) ##########################
def one_hot_encode(num,size=OUTPUT_UNITS):
arr = np.zeros(size)
np.put(arr, num-1, 1)
return arr
def one_hot_decode(arr):
return np.where(arr==1)[0][0]+1
############### End One Hot encoding ########################################
########## HELPING METHOD FOR PRINTING NETWORK CONFIGURATION AT ############
######### COMMAND PROMPT OR SOME FILE ############
def print_network(net):
for i,layer in enumerate(net,1):
print("Layer {} ".format(i))
for j,neuron in enumerate(layer,1):
print("neuron {} :".format(j),neuron)
def print_file(f,net):
for i,layer in enumerate(net,1):
f.write("Layer {} \n".format(i))
for j,neuron in enumerate(layer,1):
f.write("neuron {} : {}\n".format(j,neuron))
################################ DONE ####################################
# METHOD TO INITIALIZE THE NETWORK############################
def initialize_network(X,n_o_neurons,hidden_units,n_h_layers):
global n_weights_count
# print(X.ix[0])
input_neurons=len(X.ix[0])
hidden_neurons=hidden_units
output_neurons=n_o_neurons
n_hidden_layers=n_h_layers
net=list()
n_weights_count=0
for h in range(n_hidden_layers):
if h!=0:
input_neurons=len(net[-1])
n_weights_count+=(input_neurons)*hidden_neurons
#'''size=input_neurons'''
hidden_layer = [ { 'weights': np.random.uniform(-1,1,size=input_neurons)} for i in range(hidden_neurons) ]
net.append(hidden_layer)
n_weights_count+=(hidden_neurons)*output_neurons
#'''size=hidden_neurons'''
output_layer = [ { 'weights': np.random.uniform(-1,1,size=hidden_neurons)} for i in range(output_neurons)]
net.append(output_layer)
return net
############################### ACTIVATION FUNCTIONS IMPLEMENTATION ####################################
def activate_sigmoid(sum):
return (1/(1+np.exp(-sum)))
def activate_tanh(sum):
return np.tanh(sum)
def activate_relu(sum):
return sum.clip(0)
def activate_softplus(sum):
return np.log(1+np.exp(sum))
############################# DONE WITH ACTIVATION METHODS ##############################################
############################# DERIVATIVES OF EACH ACTIVATION FUNCTION ###################################
def sigmoidDerivative(output):
return output*(1.0-output)
def tanhDerivative(output):
return (1-output**2)
def reluDerivative(output):
der = output.copy()
der[der>0] = 1
der[der<0] = 0
return der
def softplusDerivative(output):
return activate_sigmoid(output)
########################### DONE WITH DERIVATIVES #######################################################
############################ DROPUT METHOD IMPLEMENTATION TAKING DROPUT PARAM AS GLOBAL ################
def dropout_activation(activation):
# print(activation)
global DROPOUT
size = len(activation)
# print(size)
indices = np.random.choice(np.arange(0,size),int(size*DROPOUT),replace=False)
# print(indices)
activation[indices] = EPSILON
# print(activation)
return activation
######################### RETURNING NEW ACTIVATION LIST ################################################
######################## FORWARD PROPAGATION IMPLEMENTATION ###########################################
def forward_propagation(net,input):
global ACTIVATION
row=input
for index,layer in enumerate(net):
prev_input=np.array([])
# print(layer)
# print("layer ",index+1)
neuron = []
for n in layer:
neuron.append(n['weights'])
# print("here is the neuron")
neuron = np.array(neuron)
sum = neuron.dot(row)
# print(sum)
if(ACTIVATION=="sigmoid" or index == (len(net)-1)):
result = activate_sigmoid(sum)
elif(ACTIVATION=="tanh"):
result = activate_tanh(sum)
elif(ACTIVATION=="relu"):
result = activate_relu(sum)
elif(ACTIVATION=="softplus"):
result = activate_softplus(sum)
# print(result)
result = dropout_activation(result)
for index,neuron in enumerate(layer):
neuron['result'] = result[index]
# print(layer)
row = result
return row
###########################################################################
################# BACK PROPAGATION IMPLEMENTATION ##############################
def back_propagation(net,row,expected):
global ACTIVATION
for i in reversed(range(len(net))):
layer=net[i]
errors=np.array([])
if i==len(net)-1:
results=[neuron['result'] for neuron in layer]
# for mse###errors = expected-np.array(results)
errors = np.array(results) - expected
for j in range(len(layer)):
neuron=layer[j]
# print("errors[j]",errors[j])
# print("result",neuron['result'])
#for mse### neuron['delta']=errors[j]*sigmoidDerivative(neuron['result'])
neuron['delta']=errors[j]
# print(neuron['delta'])
else:
nextlayer = net[i+1]
delta = np.array([])
errors = []
for neuron in nextlayer:
# print(neuron['weights'])
errors.append(neuron['weights'])
delta = np.append(delta,neuron['delta'])
errors = np.array(errors)
# errors = np.squeeze(errors)
# print(errors.shape,delta.shape)
errors = np.dot(errors.T,delta)
# print(errors.shape)
# exit()
results=[neuron['result'] for neuron in layer]
results = np.array(results)
# print(errors.shape,results.shape)
if(ACTIVATION == "sigmoid"):
final_error = errors*sigmoidDerivative(results)
elif(ACTIVATION == "tanh"):
final_error = errors*tanhDerivative(results)
elif(ACTIVATION == "relu"):
final_error = errors*reluDerivative(results)
elif(ACTIVATION == "softplus"):
final_error = errors*softplusDerivative(results)
# print(final_error.shape)
# exit()
for j in range(len(layer)):
neuron=layer[j]
neuron['delta']=final_error[j]
# print(neuron['delta'])
############################## WEIGHT UPDATATION ########################
def updateWeights(net,input,lrate,lam):
# print_network(net)
global n_weights_count
# print(n_weights_count)
reg = (1-lrate*lam/n_weights_count)
# print("reg ",reg)
for i in range(len(net)):
inputs = input
if i!=0:
inputs=[neuron['result'] for neuron in net[i-1]]
inputs = np.asmatrix(inputs).T
delta = [neuron['delta'] for neuron in net[i]]
delta = np.asmatrix(delta).T
# print(delta.shape,inputs.shape,inputs.T.shape)
error_loss = lrate*np.dot(delta,inputs.T)
# print(error_loss.shape)
weights = [neuron['weights'] for neuron in net[i]]
weights = np.array(weights)
# print("weights :",weights)
weights = weights*reg
# print("weights :",weights)
weights = np.asmatrix(weights)
# print(weights.shape)
weights = weights - error_loss
# print(weights.shape)
# exit()
for index,neuron in enumerate(net[i]):
# print(np)
# print(weights[index].shape)
c = np.ravel(weights[index])
neuron['weights']=c
##################### GET MINI BATCH STOCHASTIC APPROACH ###########################
def get_mini_batch(batch_size,X,y):
indices = list(np.random.randint(0,len(X),batch_size))
x_mini = np.array([])
y_mini = np.array([])
x_mini = X[indices]
y_mini = y[indices]
return x_mini,y_mini
################### CROSS ENTROPY LOSS IMPLEMENTATION WITH EPSILON FOR LOG(0) CASE ###########
def cross_entropy(expected,output):
global EPSILON
result = -(expected*np.log(output+EPSILON)+(1-expected)*np.log(1-output+EPSILON))
return result
################ L-2 NORM REGULARIZATION IMPLEMENTATION ##############################
def regularization(net,lam):
neuron_weights_mean = []
for i in range(len(net)):
layer = net[i]
for neuron in layer:
c = neuron['weights']
c = np.mean(c**2)
neuron_weights_mean.append(c)
neuron_weights_mean = np.array(neuron_weights_mean)
neuron_weights_mean = np.mean(neuron_weights_mean)
reg = lam*neuron_weights_mean
return reg
############ DECAY LEARNING RATE IMPLEMMENTATION #########################################
def decay_learn(loss,lrate,min_loss):
if min_loss is None:
return lrate, loss
if(loss<min_loss):
lrate=lrate/(1+np.abs(min_loss-loss))
min_loss = loss
return lrate,min_loss
############## TRAINGING METHOD IMPLEMENTATION #########################################
def training(X,net, epochs,lrate,y,batch_size,lam,x_valid,y_valid):
errors=[]
min_loss = None
for epoch in range(epochs):
sum_error=0
x_mini,y_mini = get_mini_batch(batch_size,X,y)
for i,row in enumerate(x_mini):
# print(i)
outputs=forward_propagation(net,row)
# print(outputs)
# expected=[0.0 for i in range(n_outputs)]
# expected[y[i]]=1
# expected = np.unpackbits(np.uint8(y_mini[i]))
expected = one_hot_encode(y_mini[i])
# sum_error_back += (expected-outputs)
sum_error += np.sum(cross_entropy(expected,outputs))/OUTPUT_UNITS
# print(sum_error)
# if(i%100==0):
back_propagation(net,row,expected)
updateWeights(net,row,lrate,lam)
# print("sum_error_back",sum_error_back)
# sum_error_back/=100
# if epoch%10 ==0:
if(i%(BATCH_SIZE-1)==0):
print("expected=",expected)
print("output=",outputs)
print("Sum_error=",sum_error/BATCH_SIZE)
if(DECAY):
loss = total_loss(net,x_valid,y_valid,lam)
lrate,min_loss = decay_learn(loss,lrate,min_loss)
# print("loss : {} LRate : {}".format(loss,lrate))
sum_error/=BATCH_SIZE
print('>epoch=%d,error=%f'%(epoch,sum_error))
errors.append(sum_error)
mean_cross = np.mean(errors)
# sum_error_back = 0
return errors, mean_cross
# Make a prediction with a network
def predict(network, row):
outputs = forward_propagation(network, row)
return outputs
def generate_output(x_test, net):
# # writes a file (output.csv) containing target variables in required format for Kaggle Submission.
print("Generating the output file:--")
df = pd.DataFrame(columns=['predicted_class'])
# y_P_list = []
# idList = [ i for i in range(int(len(phi_test)))]
for i in range(int(len(x_test))):
# print(phi_test[i])
y_pred=predict(net,x_test[i])
# print(pred)
#output=np.argmax(pred)
# super_threshold_indices = pred >= 0.5
# pred[super_threshold_indices] = 1
# super_threshold_indices2 = pred < 0.5
# pred[super_threshold_indices2] = 0
# print(target)
# print(pred)
y_pred = np.argmax(y_pred)+1
df.loc[i+1] = np.array([y_pred])
txt = 'output_H_'+str(HIDDEN_LAYERS)+'_L_'+str(LEARNING_RATE)+'_U_'+str(HIDDEN_UNITS)+'_lam_'+str(LAMBDA)+'_ACTIVATION_'+str(ACTIVATION)+'_Drop_'+str(DROPOUT)+'.txt'
df.to_csv(txt)
print("Done")
def total_loss(net,x,y,lam):
global n_weights_count
reg = regularization(net,lam)
sum_error=0
for i,row in enumerate(x):
outputs=forward_propagation(net,row)
expected = one_hot_encode(y[i])
sum_error += np.sum(cross_entropy(expected,outputs))/OUTPUT_UNITS
sum_error/=len(x)
reg/=n_weights_count
# print("reg",reg)
t_error = sum_error + reg
return t_error
def total_accuracy(net,x,y):
count = 0
for i,row in enumerate(x):
outputs=forward_propagation(net,row)
pred = np.argmax(outputs)+1
if(pred==y[i]):
count +=1
count/=len(x)
return count
def main():
# global HIDDEN_LAYERS, HIDDEN_UNITS, OUTPUT_UNITS, BATCH_SIZE, LAMBDA, LEARNING_RATE, ACTIVATION, ACTIVATION_FUNCTIONS, DROPOUT, DECAY, PARTITION
# print(HIDDEN_LAYERS, HIDDEN_UNITS, OUTPUT_UNITS, BATCH_SIZE, LAMBDA, LEARNING_RATE, ACTIVATION, ACTIVATION_FUNCTIONS, DROPOUT, DECAY, PARTITION)
# exit()
"""
Calls functions required to do tasks in sequence
say :
train_file = first_argument
test_file = second_argument
x_train, y_train = get_features();
task1();task2();task3();.....
"""
global train_mean, train_std, n_weights_count
# pow = 1
train_file = sys.argv[1]
# train_file = '/home/atul/college/cs725/Assignment/train.csv'
test_file = sys.argv[2]
# test_file = '/home/atul/college/cs725/Assignment/test.csv'
print("Reading Files...")
x_test = pd.read_csv(test_file)
x_train, y_train = get_features(train_file)
print("Done")
################################## Mapping days to one hot vector################
x_train = to_map(x_train)
x_test = to_map(x_test)
##############################################################################
####################### Normalizing the data points##############################
x_train = to_normalize(x_train)
# To take validation set out in proportion of 20-80 #############################
indexes = int(PARTITION*x_train.shape[0])
x_train, x_valid = x_train.iloc[:indexes], x_train.iloc[indexes:]
y_train, y_valid = y_train.iloc[:indexes], y_train.iloc[indexes:]
####################### Normalizing the data points##############################
x_test = to_normalize(x_test)
x_test.promotion = x_test.promotion.fillna(0)
####################################################
#Appending a series of Ones for bias in x_train
ones = np.ones(x_train.shape[0])
x_train.insert(loc=x_train.shape[1], column='Ones', value=ones)
#Appending a series of Ones for bias in x_valid
ones = np.ones(x_valid.shape[0])
x_valid.insert(loc=x_valid.shape[1], column='Ones', value=ones)
#Appending a series of ones for bias in x_test
ones = np.ones(x_test.shape[0])
x_test.insert(loc=x_test.shape[1], column='Ones', value=ones)
################################################################
#### Initialization of network ############################
net = initialize_network(x_train,OUTPUT_UNITS,HIDDEN_UNITS,HIDDEN_LAYERS)
# print_network(net)
print("#Weights :",n_weights_count)
############ Training of the network ###################3
errors,mean_cross=training(x_train.values,net,EPOCHS, LEARNING_RATE,y_train.values,BATCH_SIZE,LAMBDA,x_valid.values,y_valid.values)
# print_network(net)
# epochs=[ i for i in range(len(errors)) ]
# plt.plot(epochs,errors)
# plt.xlabel("Epochs [Batches("+str(BATCH_SIZE)+"'s)] ")
# plt.ylabel('error')
# plt.show()
print("Calculating: Loss and Accuracy")
train_loss,train_acc = total_loss(net,x_train.values,y_train.values,LAMBDA),total_accuracy(net,x_train.values,y_train.values)
val_loss,val_acc = total_loss(net,x_valid.values,y_valid.values,LAMBDA),total_accuracy(net,x_valid.values,y_valid.values)
print("Train : Loss {} Acc {} ".format(train_loss,train_acc))
print("Valid : Loss {} Acc {} ".format(val_loss,val_acc))
# ########### Prediction ###################################
# txt = 'result_cross_H_'+str(HIDDEN_LAYERS)+'_L_'+str(LEARNING_RATE)+'_U_'+str(HIDDEN_UNITS)+'_lam_'+str(LAMBDA)+'_ACTIVATION_'+str(ACTIVATION)+'_Drop_'+str(DROPOUT)+'.txt'
# f = open(txt,'a')
# f.write('\n\nResult: Activation {} Hidden layers {} H_units {} Lrate {} LAMBDA {} Epochs {} Batch Size {} Drop out {} Training Loss: {}\n\n'.format(ACTIVATION,HIDDEN_LAYERS,HIDDEN_UNITS,LEARNING_RATE,LAMBDA,EPOCHS,BATCH_SIZE,DROPOUT,mean_cross))
# f.write('\nTrain : Loss {} Acc {} \n'.format(train_loss,train_acc))
# f.write('\nValid : Loss {} Acc {} \n\n'.format(val_loss,val_acc))
# cross_entropy_loss =0
# for i in range(len(x_valid.values)):
# # print(x_valid.values[i])
# # print(y_valid.values[i])
# pred=predict(net,x_valid.values[i])
#
# #output=np.argmax(pred)
# # super_threshold_indices = pred >= 0.5
# # pred[super_threshold_indices] = 1
# # super_threshold_indices2 = pred < 0.5
# # pred[super_threshold_indices2] = 0
# # print(pred)
# target=one_hot_encode(y_valid.values[i])
# # print(target)
# # print(pred)
# cross_entropy_loss+=np.mean(cross_entropy(target,pred))
# # print(cross_entropy_loss)
# pred = one_hot_encode(np.argmax(pred)+1)
# # output = np.packbits(pred)[0]
# #output = one_hot_decode(pred)
# output=pred
#
# #square_loss+=(output-y_valid.values[i])**2
# print(output)
# print(target)
#
# # cross_entropy_loss+=np.mean(cross_entropy(target,output))
# print("expected : {} actual : {}".format(y_valid.values[i],one_hot_decode(output)))
# f.write("expected : {} actual : {}\n".format(y_valid.values[i],one_hot_decode(output)))
# # print(cross_entropy_loss,len(x_valid.values))
# cross_entropy_loss = cross_entropy_loss*1.0 / float(len(x_valid.values))
# # print("cross_entropy_loss {} ".format(cross_entropy_loss))
# # f.write("\n\ncross_entropy_loss {} \n\n".format(cross_entropy_loss))
# f.close()
# f = open('net_cross.txt','a')
# f.write('\n\nNew Net\n\n')
# print_file(f,net)
# f.close()
#
# # Output Generation is done
generate_output(x_test.values,net)
# print_network(net)
#################### Driver Function
if __name__ == '__main__':
# global HIDDEN_LAYERS, HIDDEN_UNITS, OUTPUT_UNITS, BATCH_SIZE, LAMBDA, LEARNING_RATE, ACTIVATION, ACTIVATION_FUNCTIONS, DROPOUT, DECAY, PARTITION
print("******************Neural Network Model***********************")
print("Enter model configuration")
HIDDEN_LAYERS = int(input("Hidden Layers : "))
HIDDEN_UNITS = int(input("Hidden Units : "))
print("Activation Functions: \n")
print("1.Sigmoid\n")
print("2.Tanh\n")
print("3.ReLu\n")
print("4.Softplus\n")
choice = int(input("Choice [1,2,3,4] : ")) - 1
ACTIVATION = ACTIVATION_FUNCTIONS[choice]
LEARNING_RATE = float(input("Enter learning rate : "))
print("Want to decay on learning rate : \n")
print("1. True\n")
print("2. False\n")
choice = int(input("Choice (1 or 2): "))
DECAY = True if choice == 1 else False
c = float(input("VALIDATION SET PARTITION (%): "))
PARTITION = c/100
BATCH_SIZE = int(input("Enter Batch size: "))
print("For regualrization \n")
LAMBDA = int(input("Enter Lambda (if not enter 0): "))
c = float(input("Enter DROPOUT (%) : "))
DROPUT = c/100
main()