@@ -97,7 +97,7 @@ def radial_density(
9797 return np .array (values_r )
9898
9999
100- def mean (values : np .ndarray , coords : list [np .ndarray ] = None ) -> np .ndarray :
100+ def centroid (values : np .ndarray , coords : list [np .ndarray ] = None ) -> np .ndarray :
101101 """Compute the n-dimensional mean.
102102
103103 Parameters
@@ -119,7 +119,7 @@ def mean(values: np.ndarray, coords: list[np.ndarray] = None) -> np.ndarray:
119119 return mean
120120
121121
122- def cov (values : np .ndarray , coords : list [np .ndarray ] = None ) -> np .ndarray :
122+ def covariance_matrix (values : np .ndarray , coords : list [np .ndarray ] = None ) -> np .ndarray :
123123 """Compute the n x n covariance matrix.
124124
125125 Parameters
@@ -134,7 +134,7 @@ def cov(values: np.ndarray, coords: list[np.ndarray] = None) -> np.ndarray:
134134 The covariance matrix.
135135 """
136136
137- def get_cov_2x2 (values : np .ndarray , coords : list [np .ndarray ]) -> np .ndarray :
137+ def covariance_matrix_2x2 (values : np .ndarray , coords : list [np .ndarray ]) -> np .ndarray :
138138 COORDS = np .meshgrid (* coords , indexing = "ij" )
139139 cov = np .zeros ((values .ndim , values .ndim ))
140140 values_sum = np .sum (values )
@@ -154,7 +154,7 @@ def get_cov_2x2(values: np.ndarray, coords: list[np.ndarray]) -> np.ndarray:
154154 coords = [np .arange (s ) for s in values .shape ]
155155
156156 if values .ndim < 3 :
157- return cov_2x2 (values , coords )
157+ return covariance_matrix_2x2 (values , coords )
158158
159159 cov = np .zeros ((values .ndim , values .ndim ))
160160 for i in range (values .ndim ):
@@ -163,16 +163,16 @@ def get_cov_2x2(values: np.ndarray, coords: list[np.ndarray]) -> np.ndarray:
163163 _values = project (values , axis = axis )
164164 _coords = [coords [i ] for i in axis ]
165165 # Compute 2 x 2 covariance matrix from this projection.
166- _cov = get_cov_2x2 (_values , _coords )
166+ cov_2x2 = covariance_matrix_2x2 (_values , _coords )
167167 # Update elements of n x n covariance matrix. This will update
168168 # some elements multiple times, but it should not matter.
169- cov [i , i ] = _cov [0 , 0 ]
170- cov [j , j ] = _cov [1 , 1 ]
171- cov [i , j ] = Sigma [j , i ] = _cov [0 , 1 ]
169+ cov [i , i ] = cov_2x2 [0 , 0 ]
170+ cov [j , j ] = cov_2x2 [1 , 1 ]
171+ cov [i , j ] = cov [j , i ] = cov_2x2 [0 , 1 ]
172172 return cov
173173
174174
175- def cov (values : np .ndarray , coords : list [np .ndarray ] = None ) -> np .ndarray :
175+ def correlation_matrix (values : np .ndarray , coords : list [np .ndarray ] = None ) -> np .ndarray :
176176 """Compute the n x n correlation matrix.
177177
178178 Parameters
@@ -186,7 +186,7 @@ def cov(values: np.ndarray, coords: list[np.ndarray] = None) -> np.ndarray:
186186 ndarray, shape (n, n).
187187 The correlation matrix.
188188 """
189- return cov_to_corr (cov (values , coords ))
189+ return cov_to_corr (covariance_matrix (values , coords ))
190190
191191
192192# Higher order moments (experimental)
0 commit comments