@@ -30,8 +30,9 @@ aws iam attach-role-policy --role-name SageMakerExecutionRole --policy-arn arn:a
3030### 1. Set Environment Variables
3131
3232``` bash
33- # Check available images: https://gallery.ecr.aws/deep-learning-containers/vllm
34- export CONTAINER_URI=" public.ecr.aws/deep-learning-containers/0.11-gpu-py312"
33+
34+ # Note: Using a Public Gallery image to create an SM endpoint is currently not supported
35+ export CONTAINER_URI=" 763104351884.dkr.ecr.us-east-1.amazonaws.com/vllm:0.11.2-gpu-py312"
3536export IAM_ROLE=" SageMakerExecutionRole"
3637export HF_TOKEN=" your-huggingface-token"
3738```
@@ -76,13 +77,18 @@ Recommended GPU instances:
7677Test NixlConnector locally - [ NixlConnector Documentation] ( https://docs.vllm.ai/en/latest/features/nixl_connector_usage.html#transport-configuration )
7778
7879``` bash
80+ # Login to aws ecr
81+ aws ecr get-login-password --region us-west-2 | docker login \
82+ --username AWS --password-stdin 763104351884.dkr.ecr.us-east-1.amazonaws.com
83+
7984# Pull latest vLLM DLC for EC2
80- docker pull public.ecr.aws/deep-learning-containers/vllm:0.11-gpu-py312
85+ # Note: Using a Public Gallery image to create an SM endpoint is currently not supported
86+ docker pull 763104351884.dkr.ecr.us-east-1.amazonaws.com/vllm:0.11.2-gpu-py312
8187
8288# Run container with GPU access
8389docker run -it --entrypoint=/bin/bash --gpus=all \
8490 -v $( pwd) :/workspace \
85- public. ecr.aws/deep-learning-containers /vllm:0.11-gpu-py312
91+ 763104351884.dkr. ecr.us-east-1.amazonaws.com /vllm:0.11.2 -gpu-py312
8692
8793# Inside container, run the NixlConnector test
8894export HF_TOKEN= " <TOKEN>"
0 commit comments