Skip to content

feat: Port SGLang from v1 to v2 #20

feat: Port SGLang from v1 to v2

feat: Port SGLang from v1 to v2 #20

Workflow file for this run

name: PR - SGLang
on:
pull_request:
branches:
- main
paths:
- "docker/sglang/**"
permissions:
contents: read
concurrency:
group: pr-sglang-${{ github.event.pull_request.number }}
cancel-in-progress: true
jobs:
check-changes:
runs-on: ubuntu-latest
outputs:
sglang-sagemaker: ${{ steps.changes.outputs.sglang-sagemaker }}
steps:
- uses: actions/checkout@v5
- uses: actions/setup-python@v6
with:
python-version: "3.12"
- uses: pre-commit/action@v3.0.1
with:
extra_args: --all-files
- name: Detect file changes
id: changes
uses: dorny/paths-filter@v3
with:
filters: |
sglang-sagemaker:
- "docker/sglang/Dockerfile"
build-sglang-image:
needs: [check-changes]
if: needs.check-changes.outputs.sglang-sagemaker == 'true'
runs-on:
- codebuild-runner-${{ github.run_id }}-${{ github.run_attempt }}
fleet:x86-build-runner
steps:
- uses: actions/checkout@v5
- run: .github/scripts/runner_setup.sh
- run: .github/scripts/buildkitd.sh
- name: ECR login
run: |
aws ecr get-login-password --region ${{ secrets.AWS_REGION }} | docker login --username AWS --password-stdin ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_REGION }}.amazonaws.com
- name: Resolve image URI for build
run: |
IMAGE_URI=${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_REGION }}.amazonaws.com/ci:sglang-0.5.5-gpu-py312-cu129-ubuntu22.04-sagemaker-pr-${{ github.event.pull_request.number }}
echo "Image URI to build: $IMAGE_URI"
echo "IMAGE_URI=$IMAGE_URI" >> $GITHUB_ENV
- name: Build image
run: |
docker buildx build --progress plain \
--build-arg CACHE_REFRESH="$(date +"%Y-%m-%d")" \
--cache-to=type=inline \
--cache-from=type=registry,ref=$IMAGE_URI \
--tag $IMAGE_URI \
--target sglang-sagemaker \
-f docker/sglang/Dockerfile .
- name: Docker Push and save image URI artifact
run: |
docker push $IMAGE_URI
docker rmi $IMAGE_URI
echo $IMAGE_URI > image_uri.txt
- name: Upload image URI artifact
uses: actions/upload-artifact@v4
with:
name: sglang-sagemaker-image-uri
path: image_uri.txt
sglang-regression-test:
needs: [build-sglang-image]
if: needs.build-sglang-image.result == 'success'
runs-on:
- codebuild-runner-${{ github.run_id }}-${{ github.run_attempt }}
fleet:x86-g6xl-runner
steps:
- name: Checkout DLC source
uses: actions/checkout@v5
- name: Container Pull
uses: ./.github/actions/container-pull
with:
aws_region: ${{ secrets.AWS_REGION }}
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
artifact_name: sglang-sagemaker-image-uri
# - name: ECR login
# run: |
# aws ecr get-login-password --region ${{ secrets.AWS_REGION }} | docker login --username AWS --password-stdin ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_REGION }}.amazonaws.com
#
# - name: Download image URI artifact
# uses: actions/download-artifact@v4
# with:
# name: sglang-sagemaker-image-uri
#
# - name: Resolve image URI for test
# run: |
# IMAGE_URI=$(cat image_uri.txt)
# echo "Resolved image URI: $IMAGE_URI"
# echo "IMAGE_URI=$IMAGE_URI" >> $GITHUB_ENV
#
# - name: Pull image
# run: |
# docker pull $IMAGE_URI
- name: Checkout SGLang Tests
uses: actions/checkout@v5
with:
repository: sgl-project/sglang
ref: v0.5.5
path: sglang_source
- name: Setup for SGLang Datasets
run: |
mkdir -p ${HOME}/dataset
if [ ! -f ${HOME}/dataset/ShareGPT_V3_unfiltered_cleaned_split.json ]; then
echo "Downloading ShareGPT dataset..."
wget -P ${HOME}/dataset https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
else
echo "ShareGPT dataset already exists. Skipping download."
fi
- name: Start container
run: |
# CONTAINER_ID=$(docker run -d -it --rm --gpus=all --entrypoint /bin/bash \
CONTAINER_ID=$(docker run -d -it --rm --gpus=all \
-v ${HOME}/.cache/huggingface:/root/.cache/huggingface \
-v ${HOME}/dataset:/dataset \
-v ./sglang_source:/workdir --workdir /workdir \
-p 30000:30000 \
-e SM_SGLANG_MODEL_PATH=Qwen/Qwen3-0.6B \
-e SM_SGLANG_REASONING_PARSER=qwen3 \
-e SM_SGLANG_HOST=127.0.0.1 \
-e SM_SGLANG_PORT=30000 \
-e HF_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} \
${IMAGE_URI})
echo "CONTAINER_ID=$CONTAINER_ID" >> $GITHUB_ENV
echo "Printing container startup logs ..."
docker logs ${CONTAINER_ID}
- name: Setup for SGLang Test
run: |
docker exec ${CONTAINER_ID} sh -c '
set -eux
# bash scripts/ci/ci_install_dependency.sh
'
- name: Run SGLang Tests
run: |
docker exec ${CONTAINER_ID} python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--num-prompts 1000 \
--model Qwen/Qwen3-0.6B \
--dataset-name sharegpt \
--dataset-path /dataset/ShareGPT_V3_unfiltered_cleaned_split.json
# docker exec ${CONTAINER_ID} sh -c '
# set -eux
# nvidia-smi
#
# # Regression Frontend Language Test
# cd /workdir/test/per_commit
# python3 test_choices.py
# # python3 run_suite.py --suite per-commit
#
# # # Regression Backend Runtime Test
# # cd /workdir/test/srt
# # python3 run_suite.py --suite per-commit-1-gpu
# '
- name: Cleanup container and images
if: always()
run: |
docker rm -f ${CONTAINER_ID} || true
docker image prune -a --force --filter "until=24h"
docker system df