Skip to content

feat: Port SGLang from v1 to v2 #44

feat: Port SGLang from v1 to v2

feat: Port SGLang from v1 to v2 #44

Workflow file for this run

name: PR - SGLang
on:
pull_request:
branches:
- main
paths:
- "docker/sglang/**"
permissions:
contents: read
concurrency:
group: pr-sglang-${{ github.event.pull_request.number }}
cancel-in-progress: true
jobs:
check-changes:
runs-on: ubuntu-latest
outputs:
sglang-sagemaker: ${{ steps.changes.outputs.sglang-sagemaker }}
steps:
- uses: actions/checkout@v5
- uses: actions/setup-python@v6
with:
python-version: "3.12"
- uses: pre-commit/action@v3.0.1
with:
extra_args: --all-files
- name: Detect file changes
id: changes
uses: dorny/paths-filter@v3
with:
filters: |
sglang-sagemaker:
- "docker/sglang/Dockerfile"
build-sglang-image:
needs: [check-changes]
if: needs.check-changes.outputs.sglang-sagemaker == 'true'
runs-on:
- codebuild-runner-${{ github.run_id }}-${{ github.run_attempt }}
fleet:x86-build-runner
outputs:
my_output: ${{ steps.image_uri_build.outputs.image_uri }}
steps:
- uses: actions/checkout@v5
- run: .github/scripts/runner_setup.sh
- run: .github/scripts/buildkitd.sh
- name: ECR login
run: |
aws ecr get-login-password --region ${{ secrets.AWS_REGION }} | docker login --username AWS --password-stdin ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_REGION }}.amazonaws.com
- name: Resolve image URI for build
id: image_uri_build
run: |
IMAGE_URI=${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_REGION }}.amazonaws.com/ci:sglang-0.5.5-gpu-py312-cu129-ubuntu22.04-sagemaker-pr-${{ github.event.pull_request.number }}
echo "Image URI to build: $IMAGE_URI"
echo "IMAGE_URI=$IMAGE_URI" >> $GITHUB_ENV
echo "image_uri=$IMAGE_URI" >> $GITHUB_OUTPUT
- name: Build image
run: |
docker buildx build --progress plain \
--build-arg CACHE_REFRESH="$(date +"%Y-%m-%d")" \
--cache-to=type=inline \
--cache-from=type=registry,ref=$IMAGE_URI \
--tag $IMAGE_URI \
--target sglang-sagemaker \
-f docker/sglang/Dockerfile .
- name: Docker push and save image URI artifact
run: |
docker push $IMAGE_URI
docker rmi $IMAGE_URI
echo $IMAGE_URI > image_uri.txt
- name: Upload image URI artifact
uses: actions/upload-artifact@v4
with:
name: sglang-sagemaker-image-uri
path: image_uri.txt
sglang-local-benchmark-test:
needs: [build-sglang-image]
if: needs.build-sglang-image.result == 'success'
runs-on:
- codebuild-runner-${{ github.run_id }}-${{ github.run_attempt }}
fleet:x86-g6xl-runner
steps:
- name: Checkout DLC source
uses: actions/checkout@v5
- name: echo container
run: |
echo ${{ needs.build-sglang-image.outputs.my_output }}
- name: Container pull
uses: ./.github/actions/container-pull
with:
aws_region: ${{ secrets.AWS_REGION }}
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
image_uri: ${{ needs.build-sglang-image.outputs.my_output }}
- name: Setup for SGLang datasets
run: |
mkdir -p /tmp/sglang/dataset
if [ ! -f /tmp/sglang/dataset/ShareGPT_V3_unfiltered_cleaned_split.json ]; then
echo "Downloading ShareGPT dataset..."
wget -P /tmp/sglang/dataset https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
else
echo "ShareGPT dataset already exists. Skipping download."
fi
- name: Start container
run: |
CONTAINER_ID=$(docker run -d -it --rm --gpus=all \
-v ${HOME}/.cache/huggingface:/root/.cache/huggingface \
-v /tmp/sglang/dataset:/dataset \
-v ./sglang_source:/workdir --workdir /workdir \
-p 30000:30000 \
-e SM_SGLANG_MODEL_PATH=Qwen/Qwen3-0.6B \
-e SM_SGLANG_REASONING_PARSER=qwen3 \
-e SM_SGLANG_HOST=127.0.0.1 \
-e SM_SGLANG_PORT=30000 \
-e HF_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} \
${IMAGE_URI})
echo "CONTAINER_ID=$CONTAINER_ID" >> $GITHUB_ENV
echo "Waiting for container startup ..."
sleep 300s
docker logs ${CONTAINER_ID}
- name: Run SGLang tests
run: |
docker exec ${CONTAINER_ID} python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--num-prompts 1000 \
--model Qwen/Qwen3-0.6B \
--dataset-name sharegpt \
--dataset-path /dataset/ShareGPT_V3_unfiltered_cleaned_split.json
- name: Cleanup SGLang datasets
run: |
rm -rf /tmp/sglang/dataset
- name: Cleanup container and images
if: always()
uses: ./.github/actions/container-cleanup
with:
container_id: ${{ env.CONTAINER_ID }}