Skip to content

Migrate vLLM SM, merge rayserve dockerfile, and split PR workflow #57

Migrate vLLM SM, merge rayserve dockerfile, and split PR workflow

Migrate vLLM SM, merge rayserve dockerfile, and split PR workflow #57

name: PR - vLLM RayServe
on:
pull_request:
branches:
- main
paths:
- "docker/vllm/**"
- ".github/workflows/pr-vllm-rayserve.yml"
permissions:
contents: read
concurrency:
group: pr-vllm-rayserve-${{ github.event.pull_request.number }}
cancel-in-progress: true
env:
VLLM_VERSION: 0.10.2
jobs:
build-image:
runs-on:
- codebuild-runner-${{ github.run_id }}-${{ github.run_attempt }}
fleet:x86-build-runner
outputs:
image-uri: ${{ steps.image-uri-build.outputs.IMAGE_URI }}
steps:
- uses: actions/checkout@v5
- run: .github/scripts/runner_setup.sh
- run: .github/scripts/buildkitd.sh
- name: ECR login
run: |
aws ecr get-login-password --region ${{ vars.AWS_REGION }} | docker login --username AWS --password-stdin ${{ vars.AWS_ACCOUNT_ID }}.dkr.ecr.${{ vars.AWS_REGION }}.amazonaws.com
- name: Resolve image URI for build
id: image-uri-build
run: |
IMAGE_URI=${{ vars.AWS_ACCOUNT_ID }}.dkr.ecr.${{ vars.AWS_REGION }}.amazonaws.com/ci:vllm-${{ env.VLLM_VERSION }}-gpu-py312-cu128-ubuntu22.04-rayserve-ec2-pr-${{ github.event.pull_request.number }}
echo "Image URI to build: ${IMAGE_URI}"
echo "IMAGE_URI=${IMAGE_URI}" >> ${GITHUB_ENV}
echo "IMAGE_URI=${IMAGE_URI}" >> ${GITHUB_OUTPUT}
- name: Build image
run: |
docker buildx build --progress plain \
--build-arg VLLM_VERSION=${{ env.VLLM_VERSION }} \
--build-arg CACHE_REFRESH="$(date +"%Y-%m-%d")" \
--cache-to=type=inline \
--cache-from=type=registry,ref=${IMAGE_URI} \
--tag ${IMAGE_URI} \
--target vllm-rayserve-ec2 \
-f docker/vllm/Dockerfile .
- name: Container push
run: |
docker push ${IMAGE_URI}
docker rmi ${IMAGE_URI}
regression-test:
needs: [build-image]
if: needs.build-image.result == 'success'
runs-on:
- codebuild-runner-${{ github.run_id }}-${{ github.run_attempt }}
fleet:x86-g6xl-runner
steps:
- name: Checkout DLC source
uses: actions/checkout@v5
- name: Container pull
uses: ./.github/actions/ecr-authenticate
with:
aws_region: ${{ vars.AWS_REGION }}
aws_account_id: ${{ vars.AWS_ACCOUNT_ID }}
image_uri: ${{ needs.build-image.outputs.image-uri }}
- name: Checkout vLLM tests
uses: actions/checkout@v5
with:
repository: vllm-project/vllm
ref: v${{ env.VLLM_VERSION }}
path: vllm_source
- name: Start container
run: |
CONTAINER_ID=$(docker run -d -it --rm --gpus=all --entrypoint /bin/bash \
-v ${HOME}/.cache/huggingface:/root/.cache/huggingface \
-v ${HOME}/.cache/vllm:/root/.cache/vllm \
-v ./vllm_source:/workdir --workdir /workdir \
-e HF_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} \
${{ needs.build-image.outputs.image-uri }})
echo "CONTAINER_ID=$CONTAINER_ID" >> $GITHUB_ENV
- name: Setup for vLLM tests
run: |
docker exec ${CONTAINER_ID} sh -c '
set -eux
uv pip install --system -r requirements/common.txt -r requirements/dev.txt --torch-backend=auto
uv pip install --system pytest pytest-asyncio
uv pip install --system -e tests/vllm_test_utils
uv pip install --system hf_transfer
mkdir src
mv vllm src/vllm
'
- name: Run vLLM tests
run: |
docker exec ${CONTAINER_ID} sh -c '
set -eux
nvidia-smi
# Regression Test # 7min
cd /workdir/tests
uv pip install --system modelscope
pytest -v -s test_regression.py
'
- name: Cleanup container and images
if: always()
uses: ./.github/actions/container-cleanup
with:
container_id: ${{ env.CONTAINER_ID }}
cuda-test:
needs: [build-image]
if: needs.build-image.result == 'success'
runs-on:
- codebuild-runner-${{ github.run_id }}-${{ github.run_attempt }}
fleet:x86-g6xl-runner
steps:
- name: Checkout DLC source
uses: actions/checkout@v5
- name: Container pull
uses: ./.github/actions/ecr-authenticate
with:
aws_region: ${{ vars.AWS_REGION }}
aws_account_id: ${{ vars.AWS_ACCOUNT_ID }}
image_uri: ${{ needs.build-image.outputs.image-uri }}
- name: Checkout vLLM tests
uses: actions/checkout@v5
with:
repository: vllm-project/vllm
ref: v${{ env.VLLM_VERSION }}
path: vllm_source
- name: Start container
run: |
CONTAINER_ID=$(docker run -d -it --rm --gpus=all --entrypoint /bin/bash \
-v ${HOME}/.cache/huggingface:/root/.cache/huggingface \
-v ${HOME}/.cache/vllm:/root/.cache/vllm \
-v ./vllm_source:/workdir --workdir /workdir \
-e HF_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} \
${{ needs.build-image.outputs.image-uri }})
echo "CONTAINER_ID=$CONTAINER_ID" >> $GITHUB_ENV
- name: Setup for vLLM tests
run: |
docker exec ${CONTAINER_ID} sh -c '
set -eux
uv pip install --system -r requirements/common.txt -r requirements/dev.txt --torch-backend=auto
uv pip install --system pytest pytest-asyncio
uv pip install --system -e tests/vllm_test_utils
uv pip install --system hf_transfer
mkdir src
mv vllm src/vllm
'
- name: Run vLLM tests
run: |
docker exec ${CONTAINER_ID} sh -c '
set -eux
nvidia-smi
# Platform Tests (CUDA) # 4min
cd /workdir/tests
pytest -v -s cuda/test_cuda_context.py
'
- name: Cleanup container and images
if: always()
uses: ./.github/actions/container-cleanup
with:
container_id: ${{ env.CONTAINER_ID }}
example-test:
needs: [build-image]
if: needs.build-image.result == 'success'
runs-on:
- codebuild-runner-${{ github.run_id }}-${{ github.run_attempt }}
fleet:x86-g6xl-runner
steps:
- name: Checkout DLC source
uses: actions/checkout@v5
- name: Container pull
uses: ./.github/actions/ecr-authenticate
with:
aws_region: ${{ vars.AWS_REGION }}
aws_account_id: ${{ vars.AWS_ACCOUNT_ID }}
image_uri: ${{ needs.build-image.outputs.image-uri }}
- name: Checkout vLLM tests
uses: actions/checkout@v5
with:
repository: vllm-project/vllm
ref: v${{ env.VLLM_VERSION }}
path: vllm_source
- name: Start container
run: |
CONTAINER_ID=$(docker run -d -it --rm --gpus=all --entrypoint /bin/bash \
-v ${HOME}/.cache/huggingface:/root/.cache/huggingface \
-v ${HOME}/.cache/vllm:/root/.cache/vllm \
-v ./vllm_source:/workdir --workdir /workdir \
-e HF_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} \
${{ needs.build-image.outputs.image-uri }})
echo "CONTAINER_ID=$CONTAINER_ID" >> $GITHUB_ENV
- name: Setup for vLLM tests
run: |
docker exec ${CONTAINER_ID} sh -c '
set -eux
uv pip install --system -r requirements/common.txt -r requirements/dev.txt --torch-backend=auto
uv pip install --system pytest pytest-asyncio
uv pip install --system -e tests/vllm_test_utils
uv pip install --system hf_transfer
mkdir src
mv vllm src/vllm
'
- name: Run vLLM tests
run: |
docker exec ${CONTAINER_ID} sh -c '
set -eux
nvidia-smi
# Examples Test # 30min
cd /workdir/examples
pip install tensorizer # for tensorizer test
python3 offline_inference/basic/generate.py --model facebook/opt-125m
# python3 offline_inference/basic/generate.py --model meta-llama/Llama-2-13b-chat-hf --cpu-offload-gb 10
python3 offline_inference/basic/chat.py
python3 offline_inference/prefix_caching.py
python3 offline_inference/llm_engine_example.py
python3 offline_inference/audio_language.py --seed 0
python3 offline_inference/vision_language.py --seed 0
python3 offline_inference/vision_language_pooling.py --seed 0
python3 offline_inference/vision_language_multi_image.py --seed 0
VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
python3 offline_inference/basic/classify.py
python3 offline_inference/basic/embed.py
python3 offline_inference/basic/score.py
VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
'
- name: Cleanup container and images
if: always()
uses: ./.github/actions/container-cleanup
with:
container_id: ${{ env.CONTAINER_ID }}