@@ -6,7 +6,7 @@ This guide covers how to run AWS Deep Learning Containers on AWS Platforms such
66
77### Using SageMaker Python SDK
88
9- Deploy a vLLM inference endpoint:
9+ #### Deploy a vLLM inference endpoint:
1010
1111``` python
1212from sagemaker.model import Model
@@ -26,7 +26,7 @@ predictor = model.deploy(
2626)
2727```
2828
29- Deploy an SGLang inference endpoint:
29+ #### Deploy an SGLang inference endpoint:
3030
3131``` python
3232from sagemaker.model import Model
@@ -48,7 +48,7 @@ predictor = model.deploy(
4848
4949### Using Boto3
5050
51- Deploy a vLLM inference endpoint:
51+ #### Deploy a vLLM inference endpoint:
5252
5353``` python
5454import boto3
@@ -85,7 +85,7 @@ sagemaker.create_endpoint(
8585)
8686```
8787
88- Deploy an SGLang inference endpoint:
88+ #### Deploy an SGLang inference endpoint:
8989
9090``` python
9191import boto3
@@ -124,20 +124,17 @@ sagemaker.create_endpoint(
124124
125125## Running on EC2
126126
127- After pulling a DLC image, run it with Docker:
127+ #### Running PyTorch Training Container on an EC2 Instance
128128
129129``` bash
130130# Run interactively
131131docker run -it --gpus all < account_id> .dkr.ecr.< region> .amazonaws.com/< repository> :< tag> bash
132132
133133# Example: Run PyTorch container
134134docker run -it --gpus all {{ images.latest_pytorch_training_ec2 }} bash
135- ```
136-
137- Mount local directories to persist data:
138135
139- ``` bash
140- docker run -it --gpus all -v /local/data:/data < image_uri > bash
136+ # Mount local directories to persist data
137+ docker run -it --gpus all -v /local/data:/data {{ images.latest_pytorch_training_ec2 }} bash
141138```
142139
143140For available image URIs, see [ Available Images] ( ../reference/available_images.md ) .
0 commit comments