|
7 | 7 | from copy import deepcopy
|
8 | 8 | import datetime as dt
|
9 | 9 | from functools import cached_property
|
10 |
| -from typing import Any, Callable, Optional, Union, cast |
| 10 | +from typing import Any, Callable, Optional, Union, cast, overload |
11 | 11 | import warnings
|
12 | 12 |
|
13 | 13 | import numpy as np
|
@@ -410,6 +410,38 @@ def _fit_parameterless_model(
|
410 | 410 | deepcopy(self),
|
411 | 411 | )
|
412 | 412 |
|
| 413 | + @overload |
| 414 | + def _loglikelihood( |
| 415 | + self, |
| 416 | + parameters: Float64Array, |
| 417 | + sigma2: Float64Array, |
| 418 | + backcast: Union[float, Float64Array], |
| 419 | + var_bounds: Float64Array, |
| 420 | + ) -> float: # pragma: no cover |
| 421 | + ... # pragma: no cover |
| 422 | + |
| 423 | + @overload |
| 424 | + def _loglikelihood( |
| 425 | + self, |
| 426 | + parameters: Float64Array, |
| 427 | + sigma2: Float64Array, |
| 428 | + backcast: Union[float, Float64Array], |
| 429 | + var_bounds: Float64Array, |
| 430 | + individual: Literal[False] = ..., |
| 431 | + ) -> float: # pragma: no cover |
| 432 | + ... # pragma: no cover |
| 433 | + |
| 434 | + @overload |
| 435 | + def _loglikelihood( |
| 436 | + self, |
| 437 | + parameters: Float64Array, |
| 438 | + sigma2: Float64Array, |
| 439 | + backcast: Union[float, Float64Array], |
| 440 | + var_bounds: Float64Array, |
| 441 | + individual: Literal[True] = ..., |
| 442 | + ) -> Float64Array: # pragma: no cover |
| 443 | + ... # pragma: no cover |
| 444 | + |
413 | 445 | def _loglikelihood(
|
414 | 446 | self,
|
415 | 447 | parameters: Float64Array,
|
@@ -706,6 +738,7 @@ def fit(
|
706 | 738 | if starting_values is not None:
|
707 | 739 | assert sv is not None
|
708 | 740 | sv = ensure1d(sv, "starting_values")
|
| 741 | + assert isinstance(sv, (np.ndarray, pd.Series)) |
709 | 742 | valid = sv.shape[0] == num_params
|
710 | 743 | if a.shape[0] > 0:
|
711 | 744 | satisfies_constraints = a.dot(sv) - b >= 0
|
@@ -1362,7 +1395,7 @@ def _set_tight_x(axis: Axes, index: pd.Index) -> None:
|
1362 | 1395 | ax = fig.add_subplot(2, 1, 1)
|
1363 | 1396 | ax.plot(self._index.values, self.resid / self.conditional_volatility)
|
1364 | 1397 | ax.set_title("Standardized Residuals")
|
1365 |
| - ax.axes.xaxis.set_ticklabels([]) |
| 1398 | + ax.set_xticklabels([]) |
1366 | 1399 | _set_tight_x(ax, self._index)
|
1367 | 1400 |
|
1368 | 1401 | ax = fig.add_subplot(2, 1, 2)
|
|
0 commit comments