Skip to content

ScreenLogger.format_number does not account for minus sign, potentially truncating exponents #515

Open
@till-m

Description

@till-m

c.f. #514

Demo

import numpy as np
from bayes_opt import BayesianOptimization


x = np.array([
    0.00869858, 0.01304788, 0.02174646, 0.03044504, 0.03914363,
    0.04784221, 0.05654079, 0.06523938, 0.07393796, 0.08263655,
    0.09133513, 0.10003371, 0.1087323 , 0.11743088, 0.12612946,
    0.13482805, 0.14352663, 0.15222522, 0.1609238 , 0.16962238,
    0.17832097, 0.18701955, 0.19571813, 0.20441672, 0.2131153 ,
    0.22181388, 0.23051247, 0.23921105, 0.24790964, 0.25660822,
    0.2653068 , 0.27400539, 0.28270397, 0.29140255, 0.30010114,
    0.30879972, 0.31749831, 0.32619689, 0.33489547, 0.34359406,
    0.35229264, 0.36099122, 0.36968981, 0.37838839, 0.38708698,
    0.39578556, 0.40448414, 0.41318273, 0.42188131, 0.43057989
])
y = np.array([
    54688.54691276, 56090.81734642, 49640.37335158, 54688.54691276,
    50481.73561177, 59660.23299573, 54364.94604345, 54408.09282602,
    50729.19510007, 52695.84682282, 55089.19560809, 52859.49852102,
    49472.10089954, 43470.38344347, 40907.61334058, 41525.29864839,
    37478.86431783, 34255.46345085, 37406.51129791, 34948.89388507,
    33449.28010048, 29545.51192782, 29728.1331936 , 31327.3181988 ,
    26356.96060002, 28045.40867321, 28733.31492368, 23405.1683291 ,
    26052.70858327, 23672.22630383, 22620.23125773, 25574.74171866,
    25370.30815361, 23985.10323843, 22192.45381967, 22989.33499691,
    23396.7861397 , 20921.87487021, 20269.18172291, 22365.32590395,
    20722.44085298, 19614.89124674, 22271.35394637, 18471.28640201,
    21553.99947469, 20063.25389699, 19631.78607125, 21609.72541978,
    20773.84137289, 19674.27911469
])

rt_max = 2*x[-1]
fd0 = 19896.45379


def distance(cd, rc, rt, fd):
    if rc > rt:
        return -1e10
    kdens = cd * (
        (1. / np.sqrt(1. + (x / rc) ** 2)) - (1. / np.sqrt(1. + (rt / rc) ** 2))
    ) ** 2 + fd
    model = np.where(x < rt, kdens, fd)
    # Return negative sum of squared diffs
    return -np.sum((y - model) ** 2)


pbounds = {
    "cd": [fd0, 10 * max(y)],
    "rc": [x[0], rt_max],
    "rt": [x[0], rt_max],
    "fd": [fd0 * .1, max(y)],
}

optimizer = BayesianOptimization(
    f=distance,
    pbounds=pbounds,
    random_state=1,
)

optimizer.maximize(n_iter=0, init_points=15,)

model = {}
for k, v in optimizer.max['params'].items():
    print(f"{k}: {v:.3f}")
    model[k] = v
lkl = optimizer.max['target']
print(f"Lkl: {lkl}")

Output

|   iter    |  target   |    cd     |    fd     |    rc     |    rt     |
-------------------------------------------------------------------------
| 1         | -2.882e+1 | 2.604e+05 | 4.353e+04 | 0.008796  | 0.2664    |
| 2         | -1.957e+1 | 1.045e+05 | 7.315e+03 | 0.1675    | 0.3033    |
| 3         | -4.322e+1 | 2.487e+05 | 3.306e+04 | 0.366     | 0.5928    |
| 4         | -6.689e+1 | 1.378e+05 | 5.263e+04 | 0.03205   | 0.5802    |
| 5         | -6.483e+0 | 2.606e+05 | 3.421e+04 | 0.1284    | 0.1776    |
| 6         | -5.783e+1 | 4.817e+05 | 5.783e+04 | 0.2759    | 0.5989    |
| 7         | -1e+10    | 5.253e+05 | 5.358e+04 | 0.0812    | 0.04199   |
| 8         | -5.865e+1 | 1.178e+05 | 5.263e+04 | 0.09254   | 0.3677    |
| 9         | -1e+10    | 5.723e+05 | 3.274e+04 | 0.5985    | 0.2777    |
| 10        | -3.039e+1 | 4.158e+05 | 5.012e+04 | 0.02429   | 0.6482    |
| 11        | -1.073e+1 | 5.902e+05 | 4.514e+04 | 0.2478    | 0.6815    |
| 12        | -1e+10    | 7.943e+04 | 2.782e+04 | 0.7832    | 0.259     |
| 13        | -3.974e+1 | 1.859e+05 | 9.488e+03 | 0.02521   | 0.5874    |
| 14        | -1e+10    | 1.419e+05 | 1.73e+04  | 0.4277    | 0.05419   |
| 15        | -1.592e+0 | 3.51e+05  | 1.045e+04 | 0.5111    | 0.6052    |
=========================================================================

Correct Output:

|      iter       |     target      |       cd        |       fd        |       rc        |       rt        |
-------------------------------------------------------------------------------------------------------------
| 1               | -2.882e+10      | 2.604e+05       | 4.353e+04       | 0.008796        | 0.2664          |
| 2               | -1.957e+10      | 1.045e+05       | 7.315e+03       | 0.1675          | 0.3033          |
| 3               | -4.322e+10      | 2.487e+05       | 3.306e+04       | 0.366           | 0.5928          |
| 4               | -6.689e+10      | 1.378e+05       | 5.263e+04       | 0.03205         | 0.5802          |
| 5               | -6.483e+09      | 2.606e+05       | 3.421e+04       | 0.1284          | 0.1776          |
| 6               | -5.783e+11      | 4.817e+05       | 5.783e+04       | 0.2759          | 0.5989          |
| 7               | -1e+10          | 5.253e+05       | 5.358e+04       | 0.0812          | 0.04199         |
| 8               | -5.865e+10      | 1.178e+05       | 5.263e+04       | 0.09254         | 0.3677          |
| 9               | -1e+10          | 5.723e+05       | 3.274e+04       | 0.5985          | 0.2777          |
| 10              | -3.039e+11      | 4.158e+05       | 5.012e+04       | 0.02429         | 0.6482          |
| 11              | -1.073e+12      | 5.902e+05       | 4.514e+04       | 0.2478          | 0.6815          |
| 12              | -1e+10          | 7.943e+04       | 2.782e+04       | 0.7832          | 0.259           |
| 13              | -3.974e+10      | 1.859e+05       | 9.488e+03       | 0.02521         | 0.5874          |
| 14              | -1e+10          | 1.419e+05       | 1.73e+04        | 0.4277          | 0.05419         |
| 15              | -1.592e+09      | 3.51e+05        | 1.045e+04       | 0.5111          | 0.6052          |
=============================================================================================================

Expected behavior
format_number should reserve a character for the sign of the number.

Screenshots
If applicable, add screenshots to help explain your problem.

Environment (please complete the following information):

  • python 3.12.4
  • numpy 2.0.1
  • scipy 1.14.0
  • bayesian-optimization 1.5.1

Activity

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions