-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnDemo.py
44 lines (37 loc) · 1.48 KB
/
nnDemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from simplenn.model import Model
from simplenn.dense import Layer_Dense
from simplenn.engine import ReLU, Softmax, Accuracy_Categorical, Categorical_Cross_Entropy, Adam
from sklearn.datasets import make_blobs, make_circles , make_moons
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import numpy as np
X1, y1 = make_moons(n_samples=1000, noise=0.25)
X2, y2 = make_circles(n_samples=1000, noise=0.1)
X3, y3 = make_blobs(n_samples=1000)
noise_factor = 0.25
noise = np.random.normal(scale=noise_factor, size=X3.shape)
X3_noisy = X3 + noise
X_train, X_val, y_train, y_val = train_test_split(X3, y3, test_size=0.1)
plt.subplot(2,1,1)
plt.scatter(X_train[:,0], X_train[:,1], c=y_train, s=20, cmap='jet')
plt.subplot(2,1,2)
plt.scatter(X_val[:,0], X_val[:,1], c=y_val, s=20, cmap='jet')
plt.show()
data, target = X_train, y_train
validation_data, validation_target = X_val, y_val
input_size = data.shape[1]
print(f"Input shape: {data.shape}, Target shape: {target.shape}")
print(f"Data size: {data.size}, Target size: {target.size}")
print(f"Input size: {input_size}, Output size: {target.shape}")
model = Model()
model.add(Layer_Dense(input_size,16))
model.add(ReLU())
model.add(Layer_Dense(16,3))
model.add(Softmax())
model.set(
loss = Categorical_Cross_Entropy(),
optimizer = Adam(lr=0.005, decay=1e-7),
accuracy = Accuracy_Categorical()
)
model.finalize()
model.train(data, target, epochs=1000, print_every=100, validation=(validation_data, validation_target))