|
| 1 | +""" |
| 2 | +## Running trained agent |
| 3 | +After running `train_pg_f18.py` with a specific setting (gym environment, metaprameters) a new directory will |
| 4 | +be added under `data` with the following structure: |
| 5 | +
|
| 6 | + args.exp_name + '_' + args.env_name + '_' + time.strftime("%d-%m-%Y_%H-%M-%S") |
| 7 | +
|
| 8 | +Under this directory, there are multiple (exact number is set by 'n_experiments' param) trained agents. |
| 9 | +In order to visualize (render) these agents behavior, run the `run_agent.py` script and specify the number of iterations (-n option). For example: |
| 10 | +
|
| 11 | +> python run_agent.py "data/hc_b4000_r0.01_RoboschoolInvertedPendulum-v1_21-07-2019_08-42-10/1" -n 3 |
| 12 | +
|
| 13 | +""" |
| 14 | +import os |
| 15 | +import json |
| 16 | +import pickle |
| 17 | +import gym |
| 18 | +import numpy as np |
| 19 | +import tensorflow as tf |
| 20 | +from train_pg_f18 import Agent |
| 21 | + |
| 22 | + |
| 23 | +PARAMS_FILE = "params.json" |
| 24 | +VARS_FILE = "vars.pkl" |
| 25 | + |
| 26 | + |
| 27 | +def load_params(filename): |
| 28 | + """ |
| 29 | + Load the 'params.json' file. |
| 30 | +
|
| 31 | + A simple json.loads() call does not work here because the file was saved with a special separators. |
| 32 | +
|
| 33 | + :param filename: str |
| 34 | + :return: dict |
| 35 | + """ |
| 36 | + with open(filename, 'r') as file: |
| 37 | + data = file.read().replace(',\n', ',').replace('\t:\t', ':').replace('\n', '') |
| 38 | + |
| 39 | + return json.loads(data) |
| 40 | + |
| 41 | + |
| 42 | +def load_pickle(filename, mode='rb'): |
| 43 | + with open(filename, mode=mode) as f: |
| 44 | + return pickle.load(f) |
| 45 | + |
| 46 | + |
| 47 | +def load_agent_and_env(model_dir): |
| 48 | + """ |
| 49 | + Load an agent with its pre-trained model and the relevant environment |
| 50 | +
|
| 51 | + Most of the code here is taken from train_pg_f18.py::train_PG() function |
| 52 | +
|
| 53 | + :param model_dir: str (full directory path to the 'params.json' and 'vars.pkl' files) |
| 54 | + :return: tuple (a tuple of length 2, the Agent instance and the gym env object) |
| 55 | + """ |
| 56 | + # Load the params json |
| 57 | + params_file = os.path.join(model_dir, PARAMS_FILE) |
| 58 | + params = load_params(filename=params_file) |
| 59 | + print(params) |
| 60 | + |
| 61 | + # Load the model variables |
| 62 | + vars_filename = os.path.join(model_dir, VARS_FILE) |
| 63 | + model_vars = load_pickle(filename=vars_filename) |
| 64 | + # print(model_vars) |
| 65 | + |
| 66 | + # Make the gym environment |
| 67 | + env = gym.make(params['env_name']) |
| 68 | + |
| 69 | + # Set random seeds |
| 70 | + seed = params['seed'] |
| 71 | + tf.set_random_seed(seed) |
| 72 | + np.random.seed(seed) |
| 73 | + #env.seed(seed) |
| 74 | + |
| 75 | + # Is this env continuous, or self.discrete? |
| 76 | + discrete = isinstance(env.action_space, gym.spaces.Discrete) |
| 77 | + |
| 78 | + # Observation and action sizes |
| 79 | + ob_dim = env.observation_space.shape[0] |
| 80 | + ac_dim = env.action_space.n if discrete else env.action_space.shape[0] |
| 81 | + |
| 82 | + # ========================================================================================# |
| 83 | + # Initialize Agent |
| 84 | + # ========================================================================================# |
| 85 | + computation_graph_args = { |
| 86 | + 'n_layers': params['n_layers'], |
| 87 | + 'ob_dim': ob_dim, |
| 88 | + 'ac_dim': ac_dim, |
| 89 | + 'discrete': discrete, |
| 90 | + 'size': params['size'], |
| 91 | + 'learning_rate': params['learning_rate'], |
| 92 | + } |
| 93 | + |
| 94 | + sample_trajectory_args = { |
| 95 | + 'animate': params['animate'], |
| 96 | + 'max_path_length': params['max_path_length'], |
| 97 | + 'min_timesteps_per_batch': params['min_timesteps_per_batch'], |
| 98 | + } |
| 99 | + |
| 100 | + estimate_return_args = { |
| 101 | + 'gamma': params['gamma'], |
| 102 | + 'reward_to_go': params['reward_to_go'], |
| 103 | + 'nn_baseline': params['nn_baseline'], |
| 104 | + 'normalize_advantages': params['normalize_advantages'], |
| 105 | + } |
| 106 | + |
| 107 | + agent = Agent(computation_graph_args, sample_trajectory_args, estimate_return_args) |
| 108 | + |
| 109 | + # build computation graph |
| 110 | + agent.build_computation_graph() |
| 111 | + |
| 112 | + # tensorflow: config, session, variable initialization |
| 113 | + agent.init_tf_sess() |
| 114 | + |
| 115 | + # Override the graph variables with the pre-trained values |
| 116 | + for g_var in tf.global_variables(scope=None): |
| 117 | + # Get the saved value and assign it to the tensor |
| 118 | + value = model_vars[g_var.name] |
| 119 | + set_variable_op = g_var.assign(value) |
| 120 | + agent.sess.run(set_variable_op) |
| 121 | + |
| 122 | + # # Validate that the assignment was successful |
| 123 | + # for g_var in tf.global_variables(scope=None): |
| 124 | + # assert np.array_equal(g_var.eval(), model_vars[g_var.name]) |
| 125 | + |
| 126 | + return agent, env |
| 127 | + |
| 128 | + |
| 129 | +if __name__ == "__main__": |
| 130 | + """ |
| 131 | + Example usage (after running train_pg_18.py and creating agent 'data' dirs): |
| 132 | + - python run_agent.py "data/hc_b4000_r0.01_RoboschoolInvertedPendulum-v1_21-07-2019_08-42-10/1" -n 3 |
| 133 | + - python run_agent.py "data/ll_b40000_r0.005_LunarLanderContinuous-v2_21-07-2019_09-59-05/1" -n 3 |
| 134 | + - python run_agent.py "data/hc_b50000_r0.005_RoboschoolHalfCheetah-v1_22-07-2019_20-04-48/1" -n 3 |
| 135 | + """ |
| 136 | + import argparse |
| 137 | + |
| 138 | + parser = argparse.ArgumentParser() |
| 139 | + parser.add_argument('model_dir', type=str, help='A relative path to the data dir of a specific experiment. For eample: "data/ll_b40000_r0.005_LunarLanderContinuous-v2_21-07-2019_09-59-05/1"') |
| 140 | + parser.add_argument('--n_iter', '-n', type=int, default=3) |
| 141 | + args = parser.parse_args() |
| 142 | + |
| 143 | + # Load an agent with its pre-trained model and the relevant environment |
| 144 | + model_dir = args.model_dir |
| 145 | + agent, env = load_agent_and_env(model_dir) |
| 146 | + |
| 147 | + # Run an episode with this loaded agent |
| 148 | + for i in range(args.n_iter): |
| 149 | + agent.sample_trajectory(env, animate_this_episode=True) |
| 150 | + print("done") |
0 commit comments