|
| 1 | +# coding: utf-8 |
| 2 | +# 2023/7/3 @ WangFei |
| 3 | + |
| 4 | +import logging |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torch.optim as optim |
| 8 | +import torch.nn.functional as F |
| 9 | +import numpy as np |
| 10 | +from tqdm import tqdm |
| 11 | +from sklearn.metrics import roc_auc_score, accuracy_score |
| 12 | +from EduCDM import CDM |
| 13 | + |
| 14 | + |
| 15 | +class PosLinear(nn.Linear): |
| 16 | + def forward(self, input: torch.Tensor) -> torch.Tensor: |
| 17 | + weight = 2 * F.relu(1 * torch.neg(self.weight)) + self.weight |
| 18 | + return F.linear(input, weight, self.bias) |
| 19 | + |
| 20 | + |
| 21 | +class Net(nn.Module): |
| 22 | + |
| 23 | + def __init__(self, exer_n, student_n, knowledge_n, mf_type, dim): |
| 24 | + self.knowledge_n = knowledge_n |
| 25 | + self.exer_n = exer_n |
| 26 | + self.student_n = student_n |
| 27 | + self.emb_dim = dim |
| 28 | + self.mf_type = mf_type |
| 29 | + self.prednet_input_len = self.knowledge_n |
| 30 | + self.prednet_len1, self.prednet_len2 = 256, 128 # changeable |
| 31 | + |
| 32 | + super(Net, self).__init__() |
| 33 | + |
| 34 | + # prediction sub-net |
| 35 | + self.student_emb = nn.Embedding(self.student_n, self.emb_dim) |
| 36 | + self.exercise_emb = nn.Embedding(self.exer_n, self.emb_dim) |
| 37 | + self.knowledge_emb = nn.Parameter(torch.zeros(self.knowledge_n, self.emb_dim)) |
| 38 | + self.e_discrimination = nn.Embedding(self.exer_n, 1) |
| 39 | + self.prednet_full1 = PosLinear(self.prednet_input_len, self.prednet_len1) |
| 40 | + self.drop_1 = nn.Dropout(p=0.5) |
| 41 | + self.prednet_full2 = PosLinear(self.prednet_len1, self.prednet_len2) |
| 42 | + self.drop_2 = nn.Dropout(p=0.5) |
| 43 | + self.prednet_full3 = PosLinear(self.prednet_len2, 1) |
| 44 | + |
| 45 | + if mf_type == 'gmf': |
| 46 | + self.k_diff_full = nn.Linear(self.emb_dim, 1) |
| 47 | + self.stat_full = nn.Linear(self.emb_dim, 1) |
| 48 | + elif mf_type == 'ncf1': |
| 49 | + self.k_diff_full = nn.Linear(2 * self.emb_dim, 1) |
| 50 | + self.stat_full = nn.Linear(2 * self.emb_dim, 1) |
| 51 | + elif mf_type == 'ncf2': |
| 52 | + self.k_diff_full1 = nn.Linear(2 * self.emb_dim, self.emb_dim) |
| 53 | + self.k_diff_full2 = nn.Linear(self.emb_dim, 1) |
| 54 | + self.stat_full1 = nn.Linear(2 * self.emb_dim, self.emb_dim) |
| 55 | + self.stat_full2 = nn.Linear(self.emb_dim, 1) |
| 56 | + |
| 57 | + # initialize |
| 58 | + for name, param in self.named_parameters(): |
| 59 | + if 'weight' in name: |
| 60 | + nn.init.xavier_normal_(param) |
| 61 | + nn.init.xavier_normal_(self.knowledge_emb) |
| 62 | + |
| 63 | + def forward(self, stu_id, input_exercise, input_knowledge_point): |
| 64 | + # before prednet |
| 65 | + stu_emb = self.student_emb(stu_id) |
| 66 | + exer_emb = self.exercise_emb(input_exercise) |
| 67 | + # get knowledge proficiency |
| 68 | + batch, dim = stu_emb.size() |
| 69 | + stu_emb = stu_emb.view(batch, 1, dim).repeat(1, self.knowledge_n, 1) |
| 70 | + knowledge_emb = self.knowledge_emb.repeat(batch, 1).view(batch, self.knowledge_n, -1) |
| 71 | + if self.mf_type == 'mf': # simply inner product |
| 72 | + stat_emb = torch.sigmoid((stu_emb * knowledge_emb).sum(dim=-1, keepdim=False)) # batch, knowledge_n |
| 73 | + elif self.mf_type == 'gmf': |
| 74 | + stat_emb = torch.sigmoid(self.stat_full(stu_emb * knowledge_emb)).view(batch, -1) |
| 75 | + elif self.mf_type == 'ncf1': |
| 76 | + stat_emb = torch.sigmoid(self.stat_full(torch.cat((stu_emb, knowledge_emb), dim=-1))).view(batch, -1) |
| 77 | + elif self.mf_type == 'ncf2': |
| 78 | + stat_emb = torch.sigmoid(self.stat_full1(torch.cat((stu_emb, knowledge_emb), dim=-1))) |
| 79 | + stat_emb = torch.sigmoid(self.stat_full2(stat_emb)).view(batch, -1) |
| 80 | + batch, dim = exer_emb.size() |
| 81 | + exer_emb = exer_emb.view(batch, 1, dim).repeat(1, self.knowledge_n, 1) |
| 82 | + if self.mf_type == 'mf': |
| 83 | + k_difficulty = torch.sigmoid((exer_emb * knowledge_emb).sum(dim=-1, keepdim=False)) # batch, knowledge_n |
| 84 | + elif self.mf_type == 'gmf': |
| 85 | + k_difficulty = torch.sigmoid(self.k_diff_full(exer_emb * knowledge_emb)).view(batch, -1) |
| 86 | + elif self.mf_type == 'ncf1': |
| 87 | + k_difficulty = torch.sigmoid(self.k_diff_full(torch.cat((exer_emb, knowledge_emb), dim=-1))).view(batch, -1) |
| 88 | + elif self.mf_type == 'ncf2': |
| 89 | + k_difficulty = torch.sigmoid(self.k_diff_full1(torch.cat((exer_emb, knowledge_emb), dim=-1))) |
| 90 | + k_difficulty = torch.sigmoid(self.k_diff_full2(k_difficulty)).view(batch, -1) |
| 91 | + # get exercise discrimination |
| 92 | + e_discrimination = torch.sigmoid(self.e_discrimination(input_exercise)) |
| 93 | + |
| 94 | + # prednet |
| 95 | + input_x = e_discrimination * (stat_emb - k_difficulty) * input_knowledge_point |
| 96 | + # f = input_x[input_knowledge_point == 1] |
| 97 | + input_x = self.drop_1(torch.tanh(self.prednet_full1(input_x))) |
| 98 | + input_x = self.drop_2(torch.tanh(self.prednet_full2(input_x))) |
| 99 | + output_1 = torch.sigmoid(self.prednet_full3(input_x)) |
| 100 | + |
| 101 | + return output_1.view(-1) |
| 102 | + |
| 103 | + |
| 104 | +class KaNCD(CDM): |
| 105 | + def __init__(self, **kwargs): |
| 106 | + super(KaNCD, self).__init__() |
| 107 | + mf_type = kwargs['mf_type'] if 'mf_type' in kwargs else 'gmf' |
| 108 | + self.net = Net(kwargs['exer_n'], kwargs['student_n'], kwargs['knowledge_n'], mf_type, kwargs['dim']) |
| 109 | + |
| 110 | + def train(self, train_set, valid_set, lr=0.002, device='cpu', epoch_n=15): |
| 111 | + logging.info("traing... (lr={})".format(lr)) |
| 112 | + self.net = self.net.to(device) |
| 113 | + loss_function = nn.BCELoss() |
| 114 | + optimizer = optim.Adam(self.net.parameters(), lr=lr) |
| 115 | + for epoch_i in range(epoch_n): |
| 116 | + self.net.train() |
| 117 | + epoch_losses = [] |
| 118 | + batch_count = 0 |
| 119 | + for batch_data in tqdm(train_set, "Epoch %s" % epoch_i): |
| 120 | + batch_count += 1 |
| 121 | + user_info, item_info, knowledge_emb, y = batch_data |
| 122 | + user_info: torch.Tensor = user_info.to(device) |
| 123 | + item_info: torch.Tensor = item_info.to(device) |
| 124 | + knowledge_emb: torch.Tensor = knowledge_emb.to(device) |
| 125 | + y: torch.Tensor = y.to(device) |
| 126 | + pred = self.net(user_info, item_info, knowledge_emb) |
| 127 | + loss = loss_function(pred, y) |
| 128 | + optimizer.zero_grad() |
| 129 | + loss.backward() |
| 130 | + optimizer.step() |
| 131 | + |
| 132 | + epoch_losses.append(loss.mean().item()) |
| 133 | + |
| 134 | + print("[Epoch %d] average loss: %.6f" % (epoch_i, float(np.mean(epoch_losses)))) |
| 135 | + logging.info("[Epoch %d] average loss: %.6f" % (epoch_i, float(np.mean(epoch_losses)))) |
| 136 | + auc, acc = self.eval(valid_set, device) |
| 137 | + print("[Epoch %d] auc: %.6f, acc: %.6f" % (epoch_i, auc, acc)) |
| 138 | + logging.info("[Epoch %d] auc: %.6f, acc: %.6f" % (epoch_i, auc, acc)) |
| 139 | + |
| 140 | + return auc, acc |
| 141 | + |
| 142 | + def eval(self, test_data, device="cpu"): |
| 143 | + logging.info('eval ... ') |
| 144 | + self.net = self.net.to(device) |
| 145 | + self.net.eval() |
| 146 | + y_true, y_pred = [], [] |
| 147 | + for batch_data in tqdm(test_data, "Evaluating"): |
| 148 | + user_id, item_id, knowledge_emb, y = batch_data |
| 149 | + user_id: torch.Tensor = user_id.to(device) |
| 150 | + item_id: torch.Tensor = item_id.to(device) |
| 151 | + knowledge_emb: torch.Tensor = knowledge_emb.to(device) |
| 152 | + pred = self.net(user_id, item_id, knowledge_emb) |
| 153 | + y_pred.extend(pred.detach().cpu().tolist()) |
| 154 | + y_true.extend(y.tolist()) |
| 155 | + |
| 156 | + return roc_auc_score(y_true, y_pred), accuracy_score(y_true, np.array(y_pred) >= 0.5) |
| 157 | + |
| 158 | + def save(self, filepath): |
| 159 | + torch.save(self.net.state_dict(), filepath) |
| 160 | + logging.info("save parameters to %s" % filepath) |
| 161 | + |
| 162 | + def load(self, filepath): |
| 163 | + self.net.load_state_dict(torch.load(filepath, map_location=lambda s, loc: s)) |
| 164 | + logging.info("load parameters from %s" % filepath) |
0 commit comments